[수학 바로보기] 고난도문제 대비를 위한 수능전략서를 소개합니다
게시글 주소: https://ui.orbi.kr/00010671081
수학 바로보기 미적분II 맛보기.pdf
수학 바로보기 기하와 벡터 맛보기.pdf
(더 자세한 내용은 아래 판매페이지의 맛보기나 첨부파일을 참조해 주세요)
http://atom.ac/books/3951-%EC%88%98%ED%95%99+%EB%B0%94%EB%A1%9C%EB%B3%B4%EA%B8%B0+2018/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
트리플에스 끝!
-
동덕여대보다 더 처참함
-
죄는 없는데 죄책감생김
-
https://naver.me/5YFRHw2t 어디든 민주 한숟갈 올리는게 요즘 여대에서 유행인가봄
-
속보 0
우옹애
-
기상 완료 예비군 2일차 갔다오겟음 아...
-
일단 지방의대 바이탈과 교수들은 인서울로 많이 옮기거나 그만둠 지방의대 교수들이...
-
생활패턴 망했다 1
오전 7시 취침 오후 4시 기상 이게 뭐야 대체
-
김상훈T 0
독서 독해 방식이 어떻게 되나요? 그읽그풀 느낌이면 좋겟는데..
-
잠이 안와 씨바 3
나 자고 싶다고........ ㅅㅂㅅㅂㅅㅂㅅㅂ 어젯밤도 샜는데 왜 잠이 안오는데ㅜ
-
ㄱㄱ
-
기차지나간당 2
부지런행
-
진짜 잔다.. 2
다들 자요 빨리
-
으으
-
밤샐까.. 0
수면패턴 박살났는디 초기화나 시키게
-
양악하고싶다 0
-
선착순1명 18
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
-
언제까지 이런 현타오는 일상을 살아야하지
-
또 불면증의 밤 4
엊그제도 밤을 새고 어젯밤엔 4시간 잤는데 또 잠이 안와???? 낮잠도 안잤는데 나...
-
최대한 안정적인 과목 원하고 둘 중에 하나만 꼭 고르면 머가 좋을까여
-
안녕하세요.. 8
요즘 바빠요
-
안자는 사람 손 9
가능?
-
수시6장 설대만지름 서울대의대 수시교과 합격 서울대 경제학과 학생부교과전형 합격...
-
나랑 정철할래? 1
-
그것은 바로 경제 왜냐면 전교에서 한명만 하거든
-
이분 닮은걸류 종결..
-
오르비
-
진짜 잔다. 4
10시엔 일어나야 해..
-
이게 이론상 가능한게 무서움...
-
이거들어바 18
-
시험장에서 어떤 개지랄을 했길래 이렇게 망쳤을까..
-
눈팅하는 인해전술 인민군 수많명과 잠 못자고 깨어있는 호감고닉들의 눈치싸움
-
에휴씨부럴ㅋㅋ
-
통과 내신 1
며칠전에 시험본건데 나름 기출픽이나 오투 풀어서 통과 열심히 했는데 처음 보는...
-
출근핑
-
화학2 Kb가 1보다 클 수 있나..(23학년도 17번) 0
23학년도 17번. (나) 용액 화학2 Kb가 1보다 클 수 있나..
-
단, #~#은 1343313에게 당장 쪽지를 보내야 한다는것을 의미한다
-
왜 보고 싶어함?
-
논술 발표 1
논술 발표일 보통 몇일정도에 하나요? 성대 한양 중앙 작년에 언제쯤 했는지 궁금해요
-
와이파이 왤케 빨리 차..?
-
진짜 얼마나 감사한 일인지.. 걱정없이 새르비 쌉가능
-
오래된 생각이다...
-
음울하면서도 몽환적이었던 거 같다
-
살빼야되는데
-
지거국 낮은 과라도 상관없습니다..충남대,경북대,부산대,전남대 중 가능한 대학 있을까요..?
오우!
아 지려따
이ㅜ시각 앱등이들 : ㅂㄷㅂㄷ 안열려
Ibooks로 열리는데;;
전 안되는데;;
안보이시면 아래 블로그에서 확인해 보세요;
standardmath.net
와....대단
규칙과 패턴을 찾는게 아닌 본질적인 부분을 보게 해주는 교재군요
이런 교재라면 언제라도 대환영이죠ㅎ
주문신청 했습니다.
전에 김현우t 문제를 몇문제봤는데 상당히 독특하더군요
다른 문제들보다 더 깊이 생각하게 만드는... 계산해서 답이 딱 떨어지는 문제가 아닌 답이 그렇게 나올수밖에 없다는 사고의 과정을 필연적으로 하게 만드는.. 생각 많이 하게 만드는 문제 좋았습니다.
정확히 보셨습니다!!
규칙이나 패턴을 일일이 정리해 주는 것이 아니라 스스로 '주어진 상황을 바로보자'는 것이 본 책의 취지입니다ㅎ
(보는 사람의 기준에 따라 규칙이나 패턴의 종류는 얼마든지 달라질 수 있으니까요)
고로 책은 언제나옵니까
이미 판매 시작되었습니다. (오르비 출판 책입니다....)
본문에 링크 추가하였습니다.
감사합니다 ㅠㅠ
나중에 사서 볼게요..
17수능을 17 9평에비해 너무 못봐서..
백분위 40떨어짐... 9평 100 수능 60... ㅠ
이 책도 무수한 시행착오의 결과물입니다ㅠ
(안타까운 심정은 잠시 접어두고) 시행착오로부터 자신의 약점을 파악하고 강점을 더욱 키워나간다면 훨씬 의미있는 결과로 되돌아 올거라 확신합니다..
올려주신 맛보기 파일들을 모두 보았는데요.
해설지 부분에서 해설이 진행중이다가 갑자기 페이지가 끝나는데 뒷부분을 더 볼 순 없을까요?
17 수능 30번을 얘기하시는 거면 수능 직후에 올렸던 분석글을 참조해 주세요..
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=9696414
나형은 안나오나욤ㅠㅠ링크갔더니 미2랑 기벡만...또르륵
미적분I (수2일부 포함) 도 다음달에 나옵니다..
기대해 주세요~~
시중 서점에도 나오나요
일단 오르비 내에서 판매량이 어느 정도 확보되어야 시중 서점에 풀리는 것으로 알고 있습니다ㅠ
개념의 논리성이라는 전에 쓰신글을 봤어요
음...평균값정리는 도함수의 근을 구하기힘든때의, 도함수의 근 판별 이라고정리하는게
논리성인가요? 그냥 개념의 용도가 논리성이라고할수있나요?
글에서도 언급하였듯이 논리란 철저하게 '주어진 조건이나 전제'를 기반으로 새로운? 정보를 파악하는 방식입니다.
따라서 평균값 정리에 담긴 논리를 사용하기 위해서는 정리의 내용 자체보다 그러한 정리가 어떤 조건, 어떤 상황에서 필요한지를 (절실하게) 이해하고 있어야 합니다.
도함수의 근을 파악하는 것은 평균값 정리의 내용 자체에 가깝고, 실질적으로는 '제한적으로 주어진 도함수값의 정보'를 활용하기 위한 도구라고 할 수 있습니다.
여기에 대한 자세한 설명은 '수학의 기준 미적1'이나 '수학 바로보기 미적2'를 참고해 주시기 바래요~~
확통은 안 나오나요??
네, 확통은 책의 컨셉과는 별로 맞는 부분이 없어서 출시계획이 없습니다...