(뒷북주의) 9월모평 수학 나평 21번 출제의도
게시글 주소: https://ui.orbi.kr/0009302699
수학 졷밥 재수생입니다..
얼마전 9월 모평 수학 나형 21번 문제에 대해 미분계수로 안된다느니 엄밀하게 풀어보니 평가원이 잘못 만든거 같다느니.....
"교육과정대로 풀어야해" "교과서대로 풀어야해"라면서 정작 출제의도에 맞게 푸는 사람은 한 명도 없네요..
포카칩님은 바쁘신 관계로 제가 그 정기를 이어 받아 대신해서 올바른 풀이를 올려봅니다...
포카칩님이 수학영역의비밀에서 역설하신 내용 고대로 입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잇올커리 1
잇올가면 커리 다 짜주시나요? 메가 대성 패스 있으면 그걸로 짜는거죠?
-
아침은 커피랑 먹어야지...ㅋㄱㅋ
-
오늘할거 2
11더프 풀고 채점하고 맛보고 즐기기
-
기출+ebs 정리하기로 결정 지신감만 떨어져서 보기 싫음 ㅋㅋ
-
아까 집나갈 때 아빠가 ‘오잉 왜 아직 안나갔지....?’ 하는 눈으로 쳐다보심...
-
나쁘지않을거같은데
-
기상 3
ㅎㅇ
-
1컷 96의 악몽은 진짜...
-
고등학교 다닐때 사귀던 사람은 사귀기 쉽겠지만...ㅋㅋㅋㅋㅋㅋ
-
불수능이면 자신의 지능의 한계를 깨닫고 입시판 탈출가능함 물수능이면 쓸데없는 희망만...
-
고대 성적 8
이정도면 고대 낮은 과 갈 수 있나요? 물론 이거 이투스 모고이긴 한데.. 영어 2...
-
대성 인강 복귀는 하실까요…? 아직 신규강사 3명 남았던데 그중 하나일지 의견좀요
-
평균적으로 작수보다 어려운가요??
-
오르비 짜요
-
이런 얼어 죽을 0
(진짜임)
-
박광일 풀커리 vs 김상훈+손창빈 어떤게 나을까요? 대인라 들어보신분이나...
-
눈사람 자살 사건이 최승호 작가님 책이더라구요..? 2
아쉽게도 북어는 없었음ㅠㅠ 대설주의보라고 다른 책에 수록되어있다고 하네요
-
실모많아서조와요
-
ㅈㄱㄴ
-
노래추천해줍쇼 9
실모풀기 전 활기차게 시작할 노래를
-
전 7시 45분에 일어낫습니다 근데 아현이 너무 이뻐서 베이비몬스터 뮤비보느라 준비...
-
원인이 이건가 싶어서…
-
제발,,
-
9일뒤 체험해봐라 …. 22수능 맛…
-
스카에있는 티비에서 수능 응원 문구 나옴
-
f'(x)가 서로 다른 두 개의 중근을 갖는 경우는 안 되는 건가요? 해설지에 저...
-
츄워 1
-
다들 몇 점이고 어떠신가요? 예상 1컷이랑요
-
그야 내년이니까 ㅅ@발아
-
남은 기간에 ebs 지엽파트 한번 공부해볼까하는데 혹시 어떻게 지엽파트...
-
되고싶어!!!! 그러니까 최저만 맞추게 해줘!!!
-
구라같은데 ☆
-
헤헤
-
고2인데눈물나올것같음 난 수12처럼 걍 겨울방학에해도 되는줄알았띠...ㅠ
-
전 이런 찬공기냄새가 너무 좋아요
-
수액~ 4
ㅋㅋ
-
수액 맞는거 3
언제쯤 맞아야될까요? 맞으려고 하는데 언제 맞아야 적정한지 모르겠어요 ㅜㅜ
-
비둘기가 겁이 없네 13
내 발 바로 옆에 있음
-
9일 남았군. 8
홧팅
-
국어 실모 시간 3
꼭 8시40-10시에만 푸시나요 아니면 오후에도 시간 80분 재거 푸시나요??
-
최저7도 최고16도 엄청 춥진않아서다행인듯
-
ㅠㅠ 또 나만 어렵지..
-
엉덩이 아픈데..
-
일어날때 고양이가 얼굴 부비대면서 똥꼬내밀고 아침인사해줌
-
머이리추움 4
개같은거
-
수능 화장실 2
수능 볼 때 화장실에 사람 많았나요?
-
내 생일이야… 옯붕이들아 축하해줘…
-
이렇게 생겨서 한번에 마킹되게 하는거거든요. 이거 쓸수 있나요?
f(x)=mx(x-2)(x-3)^2 일 때에도 동일한 방법으로 하면됩니다.
닉값 허슬 ㄷㄷ 글씨 멋지네여
죄송합니다...ㅠㅜ
칭찬이에욧!
어..... 풀때 분수함수 안나왔는데.....?
y=m와 유리함수 대소비교하는것이 출제의도입니다
안 풀면 편한데 ㅎ
확실히 빼는 것보다는 나누는게 더 편하긴 하겠네요...
편하다 불편하다 차원이 아니라 임의의 두 곡선의 교점에서 미분계수로 두 곡선의 대소 관계를 판단하는 것은 고교과정에 부합하지 않는 풀이입니다.
임의의 곡선과 "x축에 평행한 직선" 이 어떻게 만나는가를 보는것이 올바른 풀이에요
제가 말한 것은 함수값의 차를 이용해서 대소 관계를 구한다는 것이었습니다. 어쨌든 제 생각에도 미분계수를 이용해서 대소관계 파악하는 것은 교과과정에 맞지 않는 것 같습니다
함숫값의 차를 이용하여 대소관계를 구하는 방법도 옳은 풀이입니다. 다만 또다시 두 함수를 뺀 함수와 x축과 평행한 함수와 대소비교를 해야겠죠.
그럼 타 해설강의들은 전부 잘못가르치고있는거에요??
지금 푸시는거 첨보는데 ;;
"잘못 가르친다" 라는 기준이 "교육과정에 맞는 풀이만을 구사하게 가르친다"는 아니기에 (예를들어 학생의 흥미응 돋구는 풀이로 풀도록 유도) 그것에 대해 가치판단을 쉽사리 할 수 없겠네요
아마추어께서 그런 말씀하시면 괜히 포카칩님만 이상한 소리 듣습니다.
09개정 보시면 수2에서 유리함수 자체가 y=(ax+b)/(cx+d)의 그래프를 그릴 수 있다가 성취기준입니다.
한마디로 님이 구하신 함수는 문과는 구할필요가 없다는 얘기입니다.
출제의도는 커녕 성취기준에도 맞지 않으니 올바른 풀이라고 볼 수 없겠죠
???문과 직접출제범위인 수학2의 유리함수를 그린게 도대체 어디가 교육과정을 벗어난 건지...
저는 풀이 도중에 미분을 하지 않어도 그래프를 그릴수 있는 유리함수 밖에는 그린 적이 없습니다..
수2에서는 분모 분자가 1차식인 유리함수밖에 다루질 않습니다. 분모나 분자가 2차 이상이 되는 순간 문과범위를 벗어나게 됩니다.
이게 맞는거 같네요.. 돋네님께서는 어떤 선생님 풀이가 가장 현명한 수능적 접근이라 생각하시나요? 워낙 풀이가 분분해서 전문가의견을 여쭙고자 댓 남겨봅니다..
정해져있다고는 생각하진 않습니다. 직관적으로는 미분계수가 편할 것이고, 저같은 경우는 풀이에 빈틈이 있는 것 자체를 싫어해서 절댓값의 차로 풀었습니다.
다만 평가원이 제가 푼 정도로 엄밀함을 요구하진 않았을 것이고 문과의 수준을 충분히 고려, 미분계수 풀이에서도 적당한 타당성을 부여할 수 있다면야 딱히 상관이 없을 듯 합니다.
어느쪽이든 사후적인 분석일 뿐, 실제 현장에서 처음 맞닥뜨린다면 둘 다 맞는 쪽으로 평가원이 문제를 만들었으리라 조심스럽게 추측합니다.
심지어 이과에서조차도 분수부등식이 빠진 지금으로써는 올바른 풀이라고 보이질 않습니다.
교육과정을 좀 더 공부해보시면 좋을 것 같네요.
ㅋㅋㅋ 걍 슈발 갖다버리셈..이라
몇가지 말씀드리죠.
1. 21번문제는 저도 좀더 엄밀히 관찰해볼만한 가치가 있다고 여겨 절댓값함수 16가지개형 중 골라내서 풀어나갑니다. 그리고 대소관계로 풀어나가게되구요
그러니 풀이법이 다양해집니다. 저역시 곡선이 접하는 느낌에서부터 나가는 풀이는 어딘가 찝찝할 수있고 문과에서는 오목볼록 형태를 엄밀이 관찰하기 힘들기에,
완벽한 풀이라고 여기지 않습니다.
2. 풀이에 있어서 바른 풀이 좋은 풀이 나누는 기준은 사람마다 다르지만, 확실한건 논리적 모순이 없어야겠죠.
수B 포카칩 리농님 같은경우 교과서에서 언제나 함수들 최대 최소 정리 같은 곳에서 한쪽에 상수만 남기고
푸는 것이 '올바르고 바른풀이다' 라고 하시고, 교과서 역시 모든 함수들을 그렇게 풀어나가기에 그 정기를 이어받은건 잘하셨네요.
3. 하지만, 돋네님이 말씀하신대로 문과는 분모가 2차 이상의 함수를 배우지 않습니다. 그리고 저문제같은경우 그래프가 주어져있구요. 평가원의 의도는
평가원이 얘기하지않는이상 정답이 없지만, 친구분게서 한건 절대로 아닌것같습니다.
4. 물론 참신하고 멋진풀이입니다. 하지만 말그대로 참신하고 멋진풀이지 교과적인 풀이가 아니고, 다른 강사들의 풀이를 배척할 정도의 신분인지 실력인지 구분은 해주시고
조용히 의견제시, 이런 풀이도 있다. 이게 맞는풀이 아닌가 ? 이렇게 조심스럽게 했으면 참 괜찮았을텐데 아쉽습니다.
장문의 댓글 감사합니다!!!!!!
절댓값이 붙어있으면 범위를 나누어 하는거라고 배웠고 그것에 따라 범위를 나누면 유리함수로만 된 함수인데 허허...
문과가 그릴 수 있는 함수 맞습니다 y=절댓값 x(x-2)(x-3)절댓값/ x(x-2)^2(x-3)
결과적으로는 문과 도구로 풀 수 있지만 이차식이 포함된 유리함수를 이용하는 방향으로 접근하는 것 자체가 문제가 되는 것 아닐까요? 라고 조심스레 추측해봅니당.. 그리고 평가원이 아무이유없이 그래프를 줬을거같지는 않다는 생각도 들어서 흠...
그래프가 주어졌다는것에는 좀 더 생각해봐야겠습니다. 그런데 문과가 그릴 수 있는 그래프를 그릴 수 없다 하는 것은 말이 안된다고 생닥합니다
위 함수를 그릴수 없는 것은 아닌데 그러한 접근 자체가 문과적 접근이 아닐 수도 있을 것 같다는 얘기였습니다 이차식의 유리함수라는 발상 자체가 이번같이 인수분해 나오는 꼴이 아니면 아예 접근이 불가하다는 생각이 들어서요 .. 이 케이스에는 문과적 지식만으로 풀렸지만 문과수학이 지향하는 내용인지는 확신이 안섰습니다 풀이자체가 아닌 접근 방향에대한 논의가 이루어지는것 같아 답글 달아봅니당!!
네 행위자체 역시 교과적이네요. 근데 4차함수와 3차함수 두개로 굳이 유리함수 여러개를 꺼내도록 하려는 의도가 맞다는 확신은 어디서 오시나요 ? 그림은 왜주었죠 ? 행동자체는 교과적인데 막상 꺼내보니 교과서에서 비슷한 식조차 본적이 없는 3차/4차 형태입니다. 물론 나눠진다 한들 원본은 3차/4차 유함인데 이를 다뤄본적이 없는 학생들은 어떡하죠. 나눠지지않았다면요 ?
저는 교과서충님풀이가 별로다 라는 것보다는 다른강사나 저자분들 혹은 저의 풀이들은 출제의도에 맞게 푼사람이 없다고 하셨고 평가원 의도대로 교과서충님이 풀었다기에 평가원의 생각을 누가 더 잘읽었는지에 대한 근거가 빈약해보이니 채워주셨음좋겠습니다.
오 충분히 납득갈만하네요 사차식으로 나눈다는 생각을 하기 어렵다는거요.
저는 이와 같은 유형의 기출문제 풀 때 항상 미지수만 남기고 죄다 넘기는 풀이로 풀어왔습니다.
죄다 넘기면 어떤 함수가 나올지에 대한 생각은 하지 않아요. 왜냐면 임의의 곡선과의 만나는 점에서 대소비교를 하려면
x축에 평행한 직선만이 가능하거든요.
이 문제에서도 사차함수 사차항 계수인 m만 남기고 일단 나눠봤습니다. 그렇게 하지 않으면 풀지를 못하니까요 교육과정 내에서.
그다음 사차식이 분수인 함수를 관찰해보니 범위에 따라 유리함수 두 개로 된 함수인걸 알게되고요.
다시 말해 제가 이 풀이에 필연성을 느끼는 이유는 1.사차식으로 나누지 않으면 아예 문제 접근이 안됨 2. 임의의 곡선과 만나는 점에서 대소비교는 x축과 평행한 직선과만 가능하다 이 두개가 머릿속에 박혀있기 때문입니다.
하지만, 절댓값에 따라 범위를 나누고 모든 함수를 한쪽으로 이항해서, 최대혹은 최소가 0보다 크다 혹은 0보다 작다. 이역시 그분들의 필연적인 풀이 아닌가요 ? 포카칩님과 리농님도 그렇게 푸신걸로 알고있습니다. 리농님의 풀이에 포카칩님이 참여했다고 적혀있구요.
링크 : http://orbi.kr/0009121476
그리고 그 두가지 행위가 머릿속에 박혀있는건 교과서충님 사정인데 왜 다른 방식의 풀이..
그것도 기교적인 풀이가 아닌 대소비교풀이가(미분계수+함수값) 왜 평가원 의도가 아닌지 다시한번여쭈어봅니다.
한낱 문과생이 고교과정을 논하다니 얼탱이가; 좋고 참신한 풀이긴 하다마는 포카칩과 고교과정을 논하는건 수학을 전공하지도 않은 사람이 할 소리는 절대 아니라고 봅니다
1.나 이과임 2.두 함수 빼서하는거 가능하다고 말했는데 잘못전달된듯함 3.풀이의 통일성을 위해 두함수 빼는것도 맞지만 미지수만 남기고 나눔
4.미분계수 함숫값은 고교과정내에서 충분히 증명 가능하나 너무 발견적임
수학적 직관 차이로 인래 성민이형한테는 너무나 당연한 것이 다른이에게는 아닐수도 있다라는 생각이 들 수 있잖아요
아..네 죄성. 저게 당연한 풀이라니 할말없네요. 저는 최대최소정리를 말한것인데 .^^
포카칩님이름걸고 푸셨는데.그분도 전부 넘기고 최대최소 형태로 푸셨습니다. 뭐 더이상 닫힌사고와 본인풀이 우월주의에 빠지신분과 이야기 하기 힘듭니다. 100명이.O라고 할때 혼자 X라고 하는게 100명을 설득했을때 간지지 아니면 그닥..(수정^-^)
좋아요 누르고 갑니다
자꾸 알람이떠서.. 또끼어들어 죄송하지만 이미 누구에게 당연한 풀이인지를 논한다는게 평가원의 출제의도를 논하는 것과는 거리가 멀어진 듯 하네요.. 그리고제가 문과라서 그런지 미분계수의 함숫값이 발견적이라는 부분을 이해 못해서 설명해주시면 감사하겠습니다!