-
과탐 컷이 이렇게 높지는 않았을거 같음
-
안인데 추움 0
이게 겨울...?
-
서성한중은 몰라도 서연중은 뭔ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
정시는 아니고 수시에요 적당히 서울대 중간공정도 붙을 성적은 나오는데 전기컴공은...
-
올해 개념완성/실전문제풀이 교재 내년어 그대로 써도 된다고봄? 개정 많이 되는편인가
-
ㅇㅇ고딩도 갈 수 있음 그래도 너무 어려보이면 안댐 상식적으로 물론 저는 업소 안갑니다
-
학식 가격 1
부모님이랑 용돈 얘기 중인데요 기본적인 교통비, 식비만 받으려고 해서요...
-
수시 망해서 정시로 가야할듯 한데 혼자 진학사 텔그 등등 보고 쓰는거랑 컨설팅이랑...
-
두근두근 서울여행
-
3362개 생각보다 적네
-
그 많은 오르비언중에 나만 팔로우한 이유가 뭐임? 한둘이 아니네
-
수가생1지1 20수능 36557>21수능 12112
-
잘보고 입시판 완전히 뜨는거 확정이면 시원하게 그냥 다 버려버릴텐데 그것도 아니면...
-
맞팔 분들은 해당안됨;;; 26시즌 옯망주 발굴ON
-
오답 vs 정답 0
[문제] [오답] [정답] 인생에 정답은 없는게 아니라 사실 사람들은 원래 정답보다...
-
177/917 이라... 바로아는사람들신기함
-
씨발롬아그때나랑썸탔잖아!!!!!!!!
-
이렇게 처음에 시작했었다가 거세게 붉어졌던거 같은데 과거에도...
-
그럼 죽어
-
덕분에 미련 사악 버린다ㄱㅅ요
-
항상 1등급만 받아왔는데 지인 분께 하위권 학생 과외가 들어왔어요 심지어 고2.....
-
얼버기 2
다들 기분좋은 불금 보내요
-
두고봐 네가 이기나 내가 이기나 해보자
-
기상 완료 오늘 알바 대타가야됨 ㅇㄴ
-
간밤에 6
두명 탈릅에 한명 팥췬가
-
드론 전문가면서 0
각운동량 보존 법칙을 모른다는 사실이 매우 개탄스럽다.
-
얼버기 2
오늘도화이팅이에여
-
5분 휴식 4
하하
-
얼버기 1
-
카페인도 끊었는데 잠이 안옴
-
작년에 한양대 공대 붙여놓은 후 1학년 1학기에 모든수업 빠지고 학사경고 받고...
-
대학 2번 옮기고 군대까지 다녀온 형 보면 난 아님ㅎ
-
히히 1
우히히
-
ㄴ 이분 바보 1
11시에 깨워쥬
-
가 뭔가요? 몇개년치 자료에서 다 평균 합격점수는 글리가 1위네요..
-
뭐 이런소리 나는데 눈 땜에 뭐 무너진거 아님?? 인근에 나무도 막 무너지고 그랬는데… ㅠㅠㅠ
-
3ㅎ5 진학사 입력한사람들은 23명중10명 충족인데 몇퍼정도 예상되나요? 23...
-
강의실에서 n제 풀어야겠음 갑자기 속 뒤집어지네 이런 학교 못다니겠다
-
좆반고 내신7 0
내신7등급인데 논술감점 클까요 단국대 논술썻는데 납치당할까 두려워요ㅔ
-
근거가 많이 없는 불안함인 거 같은데 내년엔 일단 그냥 돈 벌 길 만드는 거랑...
-
노베 기출코드 2
김성은 커리 타려는데 기출 100제는 양이 좀 적은거 같아서요 기출만 양승진...
-
허...
-
노베라 김성은 커리 타려는데 기출 100제 양이 적은 거 같아서요 기출만 다른 강사 강의 들을까요?
-
10분휴식 4
하하하 즐겨야 한다 하하하
-
국어 커리 고민 1
공통 2틀 언매 4틀(ㅅㅂ) 인데 언매에서 21분 박고 폭사했음 솔직히 언매에서...
-
국어 커리 고민 0
25 수능 언매 원점수 78점(독서 7틀, 문학 2틀) 독서 내용 확인, 추론 엄청...
-
줘어어어
-
진찌 세상엔 머리 좋은 사람이 너무 많음뇨
첫 댓 빌립니다.
본문에서 언급한 칼럼입니다!
https://orbi.kr/00062385201
그리고 이건 이 개념을 활용한 문제입니다.
한 번 풀어보세요.
https://orbi.kr/00067613830
진짜볼때마다 수학존나잘한다
항상근데 96점이상에게 유용한 팁 느낌 ㅜ
오 중요한 피드백 감사합니다.
2등급 3등급을 위한 칼럼도 앞으로 작성해볼게요!!
근데웹툰보다재밋어요
지금까지 봣던 칼럼중에서 가장 이해잘되고 쓸만한듯
이차함수 증명 부분에서, 만약 원점이 이차함수 안쪽에 생겨서 접선을 그릴 수 없으면 어떡하죠??
극점이 안생기죵
오 좋은 질문이네요 !!
그 경우는 접선이 안 생기니까, 분수함수가 극값을 가지지 않는 경우라 할 수 있습니다.
이렇게만 말하면 그림이 상상이 잘 안 되죠??
원점이 이차함수 안 쪽에 있다는 것은, 이차함수가 두 근을 가진다는 뜻입니다.
즉, 처음의 분수함수에서 분모가 0이 되는 곳이 두 개 있다는거죠.
이 경우에는 첨부한 사진처럼 극점이 안 생길 수가 있습니다.
(제가 설명하는 동안 수능조커님께서 답변달아주셨네요)
오 감사합니다 !!
외부의 점에서 그을 수 있는 접선의 개수는 함수, 점근선, 변곡접선을 경계로 달라집니다
한 점의 근방을 기준으로 위로 볼록은 접선보다 함수가 아래에 있고, 아래로 볼록은 접선보다 함수에 위에 있다는 의미로 볼 수 있어요
무민님 지수함수와 로그함수가 역함수 관계일때 한쪽을x축으로k y축으로k로 평행이동하면 대칭이 깨지죠?
네 그렇죠 !
통통이를 위한 칼럼은 없나요?ㅠㅠ
수1 수2 미적만 쓰는 중입니다 ㅜ
와.. 뉴런에 들어가도 손색없을만큼 유용한 내용이네요! 잘 봤습니다!
수학을 엄청 잘하시네요^_____^
감사합니다 ^_____^
ㅋㅋㅋㅋ ㄹㅇ 쌌다
ㄷ ㄷ
와 미쳤다..
ㅁㅊㄷㅁㅊㅇ...
복잡한 식을 익숙하게 변환하시는 포인트가 넘 유용하네요.. 감사합니다
핵심을 잘 짚으셨네요!
앞으로도 좋은 칼럼 많이 올릴게요 :)
맛나다
물2러 ㄷㄷ
와 머리 망치로 얻어맞은기분임
글 잘 봤습니다! 그런데 혹시 삼차함수에서 a값 구할때 왜 접점이 -2로 바로 보이는건가요?!
삼차함수와 어떤 직선이 두 개 이상의 교점을 가질 때,
그 교점의 x좌표 합은 동일합니다.
삼차함수를 f(x), 어떤 직선을 g(x)라 해볼게요.
방정식 f(x)-g(x) =0 을 만족하는 x가 교점의 x좌표잖아요?
그런데 근과 계수의 관계에 의해 g(x)가 식이 어떻든
방정식의 삼차항 계수와 이차항 계수는 변하지 않습니다.
근의 합이 일정한거죠.
위 문제로 돌아가볼게요.
삼차함수와 x축이 -4, 0, 0을 근으로 가지니까 합은 -4입니다.
삼차함수와 y=ax 직선은 b, b, 0을 근으로 가집니다.
(b는 접점의 x좌표)
b+b+0=-4, b=-2
와 감사합니다 선생님 너무 멋있어요ㅜㅜ
권경수 선생님 몫함수랑 비슷하네요
아래쪽에서 x로 나눠서 x(x+4) = a 로 계산하시는 부분에서 x로 함부로 나누기가 망설여지는데 선생님처럼 과함하게 나눌 수 있는 이유가 뭔가요?? 연속이기 때문인가용
x=0 이외의 부분을 관찰하고 있기에 나눌 수 있는겁니다.
인수의 관점으로 생각해볼게요.
x제곱(x+4)-ax=0, 이 식이 근으로 0,b,b를 가져야 하죠?
x로 묶으면 x { x(x+4) -ax } =0
여기서 대괄호 안의 부분인 x(x+4) -ax만 관찰한 셈이죠.
관찰하는 이외의 부분의 인수는 다 날려버릴 수 있습니다. 나머지 근들은 유지되기 때문이에요.
이에 대해 자세히 다룬 칼럼이 있습니다.
https://orbi.kr/00062385201
팔로우 해두시면 앞으로도 좋은 칼럼을 많이 만날 수 있어요!
우와... 간단하지만 놓치고 있던 내용이네요. 감사합니다
아... 이미 알아보셨을 거 같긴 한데
x { x(x+4) -ax }가 아니라
x { x(x+4) -a} 입니다.
대댓글을 써버려가지고 수정이 안 되네요 ㅜ
이외의 내용은 동일합니다.
이거 약간 기울기함수같네여
(0,0)과 (x,f(x))를 이은 기울기함수
와 진짜 사랑합니다 y=x/x^2+ax+b꼴일때 극값이 얼만지 구해도 미지수 4개 식 4개의 미분식과 함숫값식으로 노가다했던 기억이 있는데 이런방법이 있었네요... 선생님 다른 칼럼도 들어가 읽어봤는데 애초에 함수식에 대한 이해도가 엄청나신거같아요.... 존경합니다 좋은칼럼 감사드리고 앞으로고 부탁드려요....ㅎㅎㅎㅎㅎㅎ
Mi친 너무좋아
한 수 배우고 갑니다