9평 다가온 김에 렌즈 칼럼
게시글 주소: https://ui.orbi.kr/00069030799
렌즈 왼쪽에서 물체를 움직이며,
물체의 위치에 따른 상의 크기를 나타내보겠습니다.
그래프가 대략적으로 이렇게 그려지겠죠.
0.5f처럼 f보다 오른쪽은 허상이 생기는 곳이고,
3f처럼 f보다 왼쪽은 실상이 생기는 곳입니다.
딱 f에는 상이 생기지 않겠죠.
한편, y축에 '상의 크기' 대신 배율을 넣어도 똑같을 겁니다.
y축을 배율로 바꾼 뒤에, 알고 있는 사실 몇 개를 그래프에 추가해보겠습니다.
첫 번째는 y절편이 1이라는 사실입니다.
허상은 배율이 1보다 클 것이고,
물체가 렌즈에 다가갈수록 배율이 1에 가까워질테니까요.
(작도를 통해 생각해보세요)
두 번째는 2f에서 배율이 1이라는 점입니다.
렌즈 문제를 많이 풀어봤다면 알고 있어야 할 사실이죠.
이렇게 그려놓고 보니, 왠지 모르게...
"그래프가 선대칭이진 않을까?"
하는 생각이 듭니다.
신기하게도 이 추측은 사실입니다. 그 말인즉슨
1.2f에서 배율과, 0.8f에서 배율이 같습니다.
둘 다 f에서부터 같은 양만큼 떨어졌기 때문입니다.
예를 들어, 문제에 이런 상황이 주어졌다고 합시다.
렌즈로부터 2L만큼 왼쪽에 물체를 뒀을 때와,
렌즈로부터 8L만큼 왼쪽에 물체를 뒀을 때
생기는 상의 크기가 같다.
그럼 독자는 f=5L이라고 바로 찾고 시작하는겁니다.
근데 배율이 같을 때만 써먹을 수 있다면 활용도가 너무 떨어집니다.
확장을 해보겠습니다.
사실 이 그래프는 말이죠, y=1/x 처럼 반비례 관계를 찾을 수 있습니다.
잠시 y=1/x 그래프를 관찰해보겠습니다.
위 그림처럼,
y축으로부터 떨어진 거리가 1:3이라면
함숫값이 3:1이 됩니다.
이런 일이 배율 그래프 위에서도 생깁니다.
이유는 뒤에서 소개해드릴 건데요,
일단 예시를 통해 뭔 말인지 이해부터 해봅시다.
초점이 2L인 렌즈에서, 3L과 6L에 뒀을 때 배율이 궁금한 상황입니다.
초점으로부터 떨어진 양이 1:4이므로,
3L에서 배율이 4배입니다.
하지만 이걸론 부족합니다. 진짜 배율이 각각 몇인지 알고 싶으니까요.
이때 2f (여기선 4L)에서 배율이 1이라는 사실을 이용해줄겁니다.
4L에서 배율이 1이기 때문에,
4L에 비해 떨어진 거리가 절반인 3L에서는 배율이 2,
4L에 비해 떨어진 거리가 2배인 6L에서는 배율이 1/2 입니다.
이걸 이용해 아래 평가원 기출문제를 풀어보세요.
답은 1번입니다.
수직선 그어놓고 이 정도 표시만 해주면 바로 답이 나옵니다.
한 번만 더 응용해보겠습니다.
아래 그림처럼
빨간 위치에 물체를 두면 배율이 1,
파란 위치에 물체를 두면 배율이 2라고 해봅시다.
이때 초점의 위치를 바로 알 수 있습니다.
2:1 내분점에 초점이 위치한다고 바로 찾을 수 있겠죠.
혹은,
초점이 여기에 있어도 말이 되겠네요.
이번엔 2:1 외분점입니다.
배율 그래프에서 '반비례 관계'를 찾을 수 있는 이유도 짧게 알아보겠습니다.
좌변은 배율을 의미합니다.
우변은 그려보면...
지금 변수가 a인겁니다.
변수를 헷갈리지 말라고 그림에는 a대신 x를 써뒀습니다.
식의 꼴을 보니 반비례인 이유를 아시겠죠.
y=1/x 그래프를 f만큼 평행이동한 셈입니다.
근데 그동안 이런 거 없이 렌즈 문제 잘만 풀어오셨을 겁니다.
사실 저도 많이 쓰진 않아요.
그런데 은근히 이걸 쓸 각이 보일 때가 있습니다.
그 각을 본다면 계산과 시간의 측면에서 꽤나 이득을 봅니다.
마치 여러분이 수학에서
삼차함수 2:1 관계를 모든 문제에 쓰진 않으나,
필요시 적재적소에 쓰는 것처럼요.
물론!! 본인이 렌즈에 숙달된 게 아니라면
이런 걸 익힐 때가 아닙니다.
항상 기초가 우선입니다.
렌즈는 계산만 착실히 잘해도 다 잘 풀리니까요.
준비한 내용은 여기까지입니다.
아직 할 말들이 남아서,
기회가 되면 렌즈2편도 가져오겠습니다.
도움이 되셨다면 좋아요 누르고 가주세요
다음에 또 좋은 글로 찾아뵙겠습니다.
#무민 #물리학2
0 XDK (+10,000)
-
10,000
-
정상화 0
5천플마 뻘글들 out 시키는 중
-
홍대 공대: 나도 내년에 1년 박을 건데? 중대 상경: ㄱㄱ 하셔요 외대 상경: 이과로 고고혓 음
-
나 군번줄 받을 수 있남....... 아니면 말만 선복무인지
-
미적 실질컷은 88이고 형식컷은 86쯤 되지 않을까 싶음 0
그래야 기하 1컷이 88임 절평은 무시 못한다고! 이럼 확통은 92쯤 되나
-
눈 부릅뜨고 법안 찢었다…7억뷰 터진 뉴질랜드 女의원 영상 2
뉴질랜드 의회에서 마오리족 의원들이 법안을 반대하며 전통춤 '하카 공연'을 벌여...
-
가보자.. 02 라스트뒌스 ㅎ
-
1컷 92는 진짜 진심으로 그렇게 생각하고 말하는 거냐? 2
올해 9모 문제를 돌이켜보면 훨씬 말이 안되는데
-
과탐 필수대학은 입결이 어느정도까지 내려갈까요?
-
암기형이 전혀 없었음 물어보는 개념도 깊이가 얕고 수특에서는 자음 체계표 없이 낸...
-
떨어야하는거 맞죠 ㅠㅠ 미적1틀입니다..
-
??
-
수능 당일에 긴장해서 잠못자니까 결과가 많이 안좋네 그래도 그냥 간다 삼수는 못하겠어
-
납치 당할수도 있을것같아서요ㅠㅠ 저는 식품영양학과 썼고 기하는 몰라서 기하 제외...
-
외모나 성격 정상인인가요?
-
눈치게임 on! 33대 1은 씹 ㅋㅋㅋ
-
작년에 언매하지마라? 이건 인정 근데 올해도 언매하지마라 이건 잘 모르겠음.....
-
아…
-
확통을 늘 다 맞았으면 계속 확통 하는게 맞음 ?? 1
1년 쉬긴 했는데 24수능 대비할 때 서바 강케이 이런것도 확통은 1개 틀리거나 다...
-
인강으로 개념듣고 사설컨 구해가면서 풀면 좋은 등급 받을 수 있을까요?
-
작년 28하고 정답률 비슷할거같앗는데 메가 정답률은 두배 차이남뇨.. 흠
-
izza
-
30살 후 내 모습 , mbti랑 내 강점 이런거 물어봤는대 면접 망한건가요 ㅋㅋ...ㅜ
-
등급컷이랑 표점 더이상 업뎃 안되나요?
-
과외잡아야함
-
미적 1컷 92 9
<< 역대급 지랄 헛소리 걍 무시하자 ㅇㅇ
-
핵빵난 메디컬 문닫고 들어가고 싶다 이 말입니더
-
탐구 개망해서 내년에 재수하려고 하는데 물2 화2 유저다. 화2는 그래도...
-
쪽지 안받는법 2
싸가지없게 살기
-
독재학원 2
단과수업 듣고 독재 할경우 독재학원은 어딜 추천 하시나요?
-
89 97 2 96 96 이정도면 어디가나요 언미사문지구
-
평소에 20번 못 푼 적 없는데 ㅠㅠ
-
어떤 사이트에서도 88 위로 1컷 잡는 데가 없는데 오르비 와이라노…
-
근데 25미적이 그렇게 물로켓임? 겁나 어렵다고 보는데 ㅋㅋㅋㅌㅋ 10
미적러는아니어도 모평수능 다 풀어봄으로써 작수 삼십도 사후적으로 그렇게...
-
무조건 현장 예매만 가능한거에요?
-
9평은 그냥 미적기준 30원툴로 느껴졌음.. 수능은 그정돈 아니었던거같은데
-
둘다 현장 작6은 다 푸는데 65분 작9는 다 푸는데 40분 걸렸고 올수는 65분...
-
중앙대 기계공학 붙은 생기부로 성대 공학계열 가능?? 1
작년 예비 1번으로(모집정원 12명) 중대 기공 붙었는데 이번에 성대 ㄱㄴ할까요??
-
"휴대전화에 TV 기능 넣어 수신료 징수하자"는 KBS 사장 후보자…야당 "4대면 네 배 내냐? 정신 나간 소리" 3
박장범 KBS 사장 후보자가 KBS의 수신료 분리 징수에 따른 수입 감소 대안으로...
-
미적컷 88보다 위일듯 11
현장서 어려운 문제가 22,28,29,30정도인데 1문제만 풀어도 88이니 수능표본...
-
역시 재수는필수 삼수는 선택
-
근데 기하는 컷이 12
4년째 고정 88 철통방어임? 진짜 뭐지ㅋㅋㅋㅋㅋ
-
고속 질문 4
고속 연초록이면 거의 붙는건가요...?
-
풀면서 그냥 9평급인데? 라고 생각했음 92점이 1컷은 아니겠지만 88..? 까지...
-
물리 수학은 매니아가 많으니까
-
잘보면 평타고 못보면 많이 힘들어지는거라 생각했는데 생각보다 사탐잘이 급간을 많이 올려준 느낌입니다
-
닉값은 해야지 ㅇㅇ.. ++ 수의대 테그 제작 요망
-
복전으로 대기업 갈수 있나요??
-
왕십리? 8
안암?
-
철도파업한다는데 1
논술영향있는거 아님?
https://orbi.kr/00064989284
배율공식 f/a-f 아닌가요?
그리고 2l 8l상황에서 배율이 같으면 f =5l아닌지도...
렌즈? 렌즈! 렌즈! 렌즈!
ㄹㅇ광기
물리 모루지만 좋아보여서 좋아요튀
맛있는 글 감사합니다!
아 이 렌즈..
감사합니다! -렌즈 크리스타-
문제 풀면서 막연하게 쓰고 있던 게 확실하게 정리되는 거 같네요
감사합니다!!
와! 렌즈! 씹리학2 아시는구나! 혹시 모르시는 분들을 위해 설명드립니다 전자기와 도플러와 함께 의문사 복병 삼대장으로 진.짜.겁.나.귀.찮.습.니.다.
푼 건 모조리 피해가고 오목렌즈 거울 다 빠져서 만만히 봤다가 거들떠도 안 보던 다중렌즈로 뒷목 잡게 되는데 정답률 보면 나만 틀립니다...
하지만 이러면 절대 깰 수가 없으니 제작진이 치명적인 약점을 만들었죠. 바로 사탐런이라는 것입니다...
눈에 끼는 렌즈인 줄 알고 들어왔는데…
와! 렌즈 아시는구나!