칼럼7) 등차수열 합은 이차함수다
게시글 주소: https://ui.orbi.kr/00062226391
우선 기출 문제를 하나 보겠습니다.
(더 내리면 스포)
답은 4번입니다.
제가 전에 썼던 칼럼에서 등차수열 관련 학습할 내용을 다음과 같이 분류해놓은 적이 있는데요, 이 글은 세 번째
3. Sn 자체의 성질에 대한 칼럼입니다.
등차수열의 합은 결국 이차함수이기 때문에, 이차함수의 여러가지 성질을 이용해서 풀이를 해갈 수 있습니다.
<풀이>
지금 제가 알려드리는 방법은 일반적으로 알려진 풀이와 큰 흐름은 같으나, 디테일에서 차이가 납니다. 더 빠르게 답을 내실 수 있을거에요.
우선 Sn을 그려봐야겠죠.
공차가 음수이기 때문에 위로 볼록한 함수를 그리면 되고, 또 (0,0)을 지나게끔 그려주었습니다. Sn의 필수조건이죠. 그리고 b는 14 이상의 자연수여야 한다는 것도 보이네요.
그 뒤 문제에 주어진 이 조건을 해석해야겠죠. n이 자연수일 때 늘 Sn 함숫값의 절댓값이 14보다 크려면 어떻게 되어야 할까요.
이차함수가 0을 지나는, 표시한 저 부분을 관찰해야겠다는 생각이 자연스레 들어야 합니다. 0을 지나는 곳과 왼쪽, 오른쪽으로 가장 가까이 있는 각 점이 함숫값의 크기가 14 이상이어야 합니다. 이 조건만 만족하면 이차함수 특성상 그 외에는 문제될 부분이 없습니다. 계속 절댓값이 증가할테니까요.
오른쪽 근을 정확히 구해야 할 필요성이 느껴집니다. Sn 식을 직접 써서 근을 b로 표현할 수도 있지만, 그건 좀 재미 없으니 다른 방식으로 가볼게요.
우선 an 식을 써보겠습니다.
이 등차수열은 일 때 0을 지납니다. 그럼 이차함수 Sn은 에서 최댓값을 가집니다.
(이유 모르겠으면 옆에 링크 게시물 확인! 위에 링크랑 같은 링크입니다. https://orbi.kr/00061847052 )
한편 Sn은 n=0일 때 근을 가지므로, 대칭성에 의해 나머지 한 근은
입니다. 이걸 보며 한 가지 정보를 더 끌어내야 합니다. 바로 b가 홀수라는 점입니다.
b가 짝수라면 나머지 한 근은 자연수가 될텐데요, 그런 일이 일어나서는 안 되겠죠. 함숫값 크기가 14이상이어야 한다는 조건을 만족하지 못할테니까요.
b가 홀수라는 걸 통해 또 다른 정보를 얻을 수 있습니다.
근과 양쪽으로 가장 가까운 점을 다음과 같이 표현할 수 있습니다. 한편 표시한 빨간 부분 길이는 1/2로 같습니다.
표시한 부분 길이가 같다는 정보를 통해 또 또 다른 정보를 얻을 수 있습니다.
바로 점 A와 점 B의 함숫값을 둘 다 조사해야 할 필요가 없다는 점입니다. 이차함수 특성상 축을 지난 이후로 점점 함숫값 변화폭이 커지는데요, 점 A부터 이차함수의 근까지의 변화량이 14보다 크다면, 이차함수의 근부터 점 B까지의 변화량은 당연히 14보다 클 것입니다. 후자가 항상 더 큰 값을 가져야 하기 때문이죠.
참고로 교육청에서 공개한 답지는 A, B 함숫값을 모두 조사했습니다. (자기들은 그렇게 안 풀어놓고 답지만 그렇게 써뒀을 확률이 큽니다. 답지를 작성할 때에는 작성자가 답지 쓰기 편한 방식으로 쓰는게 아니라, 공부하는 학생들을 위해 제대로 답지를 써야한다고 생각하는데... 교육청 답지를 보며 아쉬움을 느낄 떄가 많습니다. 이 문제도 그 중 하나네요.)
아까 an식을 써뒀으니 무민공식을 이용하여 Sn 식을 바로 써봅시다.
(무민공식 모른다면 옆에 링크 확인 https://orbi.kr/00061847052 )
점 A의 x좌표를 대입합니다. 그 결과가 14 이상이라고 부등식을 세워준 뒤에 풀면
이 나옵니다.
답은 4번입니다.
Sn 을 "이차함수답게" 해석해야 한다는게 구체적으로 어떤 느낌인지를 잘 보여준 문제라 생각합니다.
수열은 자유도가 상당히 높은 파트인데요, an 을 관찰하며 답을 낼 때도 있고, Sn을 관찰하며 답을 낼 때도 있고, 둘이 같이 보며 전개해가야 할 때도 있죠. 세 방식이 모두 어색하지 않아야 처음 보는 문항을 만났을 때 제대로 접근할 수 있을겁니다.
또 다른 기출문제를 볼게요.
얘도 조건에 따라 Sn을 완성하다보면 Sm=-162, S_2m= 162로 확정짓고 계산하면 끝이란 걸 알 수 있어요. an으로 돌아가지 않고 Sn의 이차함수적 성질에 따라 끝낼 수 있는겁니다.
도움이 되셨다면 좋아요 부탁드리고, 팔로우 해두시면 앞으로 올라오는 칼럼들과 자작문제를 놓치지 않고 확인하실 수 있습니다.
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서성한중은 몰라도 서연중은 뭔ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
정시는 아니고 수시에요 적당히 서울대 중간공정도 붙을 성적은 나오는데 전기컴공은...
-
올해 개념완성/실전문제풀이 교재 내년어 그대로 써도 된다고봄? 개정 많이 되는편인가
-
ㅇㅇ고딩도 갈 수 있음 그래도 너무 어려보이면 안댐 상식적으로 물론 저는 업소 안갑니다
-
학식 가격 1
부모님이랑 용돈 얘기 중인데요 기본적인 교통비, 식비만 받으려고 해서요...
-
수시 망해서 정시로 가야할듯 한데 혼자 진학사 텔그 등등 보고 쓰는거랑 컨설팅이랑...
-
두근두근 서울여행
-
3362개 생각보다 적네
-
그 많은 오르비언중에 나만 팔로우한 이유가 뭐임? 한둘이 아니네
-
수가생1지1 20수능 36557>21수능 12112
-
잘보고 입시판 완전히 뜨는거 확정이면 시원하게 그냥 다 버려버릴텐데 그것도 아니면...
-
맞팔 분들은 해당안됨;;; 26시즌 옯망주 발굴ON
-
오답 vs 정답 0
[문제] [오답] [정답] 인생에 정답은 없는게 아니라 사실 사람들은 원래 정답보다...
-
177/917 이라... 바로아는사람들신기함
-
씨발롬아그때나랑썸탔잖아!!!!!!!!
-
이렇게 처음에 시작했었다가 거세게 붉어졌던거 같은데 과거에도...
-
그럼 죽어
-
덕분에 미련 사악 버린다ㄱㅅ요
-
항상 1등급만 받아왔는데 지인 분께 하위권 학생 과외가 들어왔어요 심지어 고2.....
-
얼버기 2
다들 기분좋은 불금 보내요
-
두고봐 네가 이기나 내가 이기나 해보자
-
기상 완료 오늘 알바 대타가야됨 ㅇㄴ
-
간밤에 6
두명 탈릅에 한명 팥췬가
-
드론 전문가면서 0
각운동량 보존 법칙을 모른다는 사실이 매우 개탄스럽다.
-
얼버기 2
오늘도화이팅이에여
-
5분 휴식 4
하하
-
얼버기 1
-
카페인도 끊었는데 잠이 안옴
-
작년에 한양대 공대 붙여놓은 후 1학년 1학기에 모든수업 빠지고 학사경고 받고...
-
대학 2번 옮기고 군대까지 다녀온 형 보면 난 아님ㅎ
-
히히 1
우히히
-
ㄴ 이분 바보 1
11시에 깨워쥬
-
가 뭔가요? 몇개년치 자료에서 다 평균 합격점수는 글리가 1위네요..
-
뭐 이런소리 나는데 눈 땜에 뭐 무너진거 아님?? 인근에 나무도 막 무너지고 그랬는데… ㅠㅠㅠ
-
3ㅎ5 진학사 입력한사람들은 23명중10명 충족인데 몇퍼정도 예상되나요? 23...
-
강의실에서 n제 풀어야겠음 갑자기 속 뒤집어지네 이런 학교 못다니겠다
-
좆반고 내신7 0
내신7등급인데 논술감점 클까요 단국대 논술썻는데 납치당할까 두려워요ㅔ
-
근거가 많이 없는 불안함인 거 같은데 내년엔 일단 그냥 돈 벌 길 만드는 거랑...
-
노베 기출코드 2
김성은 커리 타려는데 기출 100제는 양이 좀 적은거 같아서요 기출만 양승진...
-
허...
-
노베라 김성은 커리 타려는데 기출 100제 양이 적은 거 같아서요 기출만 다른 강사 강의 들을까요?
-
10분휴식 4
하하하 즐겨야 한다 하하하
-
국어 커리 고민 1
공통 2틀 언매 4틀(ㅅㅂ) 인데 언매에서 21분 박고 폭사했음 솔직히 언매에서...
-
국어 커리 고민 0
25 수능 언매 원점수 78점(독서 7틀, 문학 2틀) 독서 내용 확인, 추론 엄청...
-
줘어어어
-
진찌 세상엔 머리 좋은 사람이 너무 많음뇨
-
아 내일 복귀네 2
복귀하고 공부 다시 시작해여겠다
-
뉴비네요
1빠임니다
1빠 ㄱㅁ
등차수열의 합을 이차함수의 그래프로 해석할 때, 연속적으로 그래프를 그리면 정의역을 실수 전체로 한정하는 실수가 가끔 있긴 해요, 그걸 헷갈리면 저 문제에서도 멘붕이 왔겠네요..
무밍추