[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
게시글 주소: https://ui.orbi.kr/0006105887
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어:4(이때 4말곤 다 1or2임) 수학:1 영어:2 물리학1:3(고2~고3)...
-
다음주에 홈에서 하는 오사수나 경기만 이기면 구단 역대 최대연승기록 경신인데......
-
할 짓 없어서 뻘글 싸지르는 중이니까 이거라도 보고가셈ㅋㅋ 적당히 잘 넣은 것 같나요??
-
국어 백분위 90 수학 백분위 91 영어 4등급 물리 4등급 백분위 68 지구...
-
밥 한번 먹기도 힘드네 에휴....
-
ㅈㄴ 두@근대네
-
커하 / 커로 7
고3 교육청, 평가원만 커하 조합 99 / 100 / 1 / 99 / 99 커로...
-
ㅇㅇ?
-
이럼 잠 안 오는데..
-
그 뒤엔 다 허수들이겠..지요...? 제발ㄹ
-
붙을 가능성 높으면 물리 유기하고 영어공부하고싶다 ㅅㅂ
-
션티 프리퀀시 0
키스타트 하기 전에 고등베이직 단어장 외우고 있었는데(얼마 안외움) 이거 계속...
-
ㅁㅌㅊ? 0
내 프사 ㅁㅌㅊ?
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][학교 홈페이지 및 GLS사용법] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
운동팟 결성햇다 4
낄낄
-
성대 사과 0
642.82인데 추합 돌아오긴 어렵겠져..?
-
평가원 커하 2
95 98 1 97 100 네…
-
미대입시생이었는데 서홍국 곽건이 떨어지고 여기만 붙음 그래도 미대중에선 대충...
-
이거 대체 뭔가여? 무슨맥락에서 만들어진거인지 설명 가능한분.
-
머리 ㅈㄴ 기네 5
헤어밴드 껴도 눈 가리네
-
평가원 커하 9
100 100 98 98 놀랍게도 모두 한 시험에서 커하를 찍었다
-
평가원 커로 3
수학은 80점인가 81점(이게 4등급 ㅋㅋㅋㅋㅋ) 다른 과목도 다 4등급이...
-
100억 생기면 5
바로 학교 자퇴 때려야겠다
-
안녕하세요 이제 2학년 되는 숭실대생입니다 반수를 하려고하는데 탐구과목을 뭘...
-
평가원 커하 모음 11
국어: 백분위 98 수학: 1등급 영어: 원점수 98점 물1:원점수 47점...
-
컷 존나널널하네ㅅㅂ
-
국 5 수 5 영 1 물 (작년) 4 지 (작년) 5 생윤 (올해) 2 세지...
-
오노추 2
-
김상훈 유네스코 0
유네스코 화작교재 에 최근 기출 모두 실려있나요? 마닳 살려고 했는데
-
심지어 커플이신것 같은데 요주의 인물들로 예의주시 하겠습니다.
-
언미물1지2 98 96 1 83 95 그냥 물리 진작에 안 버린 내가 병신이지 응..
-
나간다
-
국어 94 수학 68 영어 3등급 물리1 65 생명1 81
-
우하하하하하하하 1
저 쌓여있는 교재를 보니 내가 웬지 수능 만점을 받을 것 같은 느낌이 들어
-
올수 14번을 절거나 틀렸다 도형보면 머리아프다 평가원 도형문제중에 크게...
-
의외로 고3 때랑 큰 차이 없네
-
100 98 1 99 99 94 89 1 92 88
-
평가원 커하 0
99 97 2 75 90 근데 이제 국어 빼고 다 수능인
-
마음은 든든한 국밥한테 가는거 같음 우짜냐
-
주인이없네
-
커로 모음 4
85 51 5 85 87 수학 51은 자퇴 이후 처음본 현역때라 이해해주셈..
-
커로 성적 6
90 92 4 80 84 6평+9평
-
음마싯다
-
두각수학황 3
출격.
-
커하는 6
99 89 2 100 99
-
백분위 국어 97 수학 88 영어 2 물1 62 지2 71 악악악악악악
-
솔랭에서 도란만 기다린다모 도란과 도란도란 협곡데이트 이런게 짝사랑하는...
-
해도 되는거 맞죠?
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^