벡터=좌표라고 생각하면 큰 낭패
게시글 주소: https://ui.orbi.kr/00056751794
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
??: 설마 이것도 모르고 뉴런을?... 됐어....시발점으로 가세요 (3초...
-
아 풀렸다 0
무섭네...
-
자꾸 내 아냐 가져간다고오 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
아침부터 부재중 전화 3통이나 와있어서 보니까 어? 발표했네...?중냥아 다음생에 보자
-
다들 굿모닝~ 2
-
그냥 악착같이 모아서 개비싼거 사야할듯
-
아냐야 고맙다
-
아니 내 레어가 2
-
아 0
레어 하나 잘못 삼
-
ㄱㅎ ㅅㄱㅇ ㅎㅇㄴㅂ ㄴㄹ ㅁㅇㅂㄱㄷㄱ ㅈ ㅇㅇㅇ ㄴㅇ ㅁㅇㅇ ㅇㅈㅅㅇ ㅇ ㄱ ㅇㅅㄱ
-
꾸중글 0
꾸준하게 꾸중 듣기
-
갑자기 운영자가 풀어버려써...
-
흠냐
-
오늘 과외없음 23
다시 눕기
-
나머진 현금으로 해달라하는거어떰
-
ㅇㅈ 0
겠냐
-
난 지금까지 레어 2개를 등재하였는데 저작권때문에 혹시 몰라서 2개 전부 내가...
-
국캠 썼는데 1학년은 기숙사 2학년부턴 자취가 일반적이라는데 이유가먼가요?? 그리고...
-
뭔 ㅅㅂ
-
할부지가 최소 충남대는 가야 등록금 대주신다는데 지금 내신이 4점 초반대에요.....
-
흠
-
와 1
ㄱㄴㄷ 주관식으로 냈던 문제가 벌써 재작년이라니
-
내가 흡연자 다 n수지? 하니까 그렇대 n수생은 말 안드러
-
제 취향입니다
-
똥글만 싸도 좋아해주시는 여러분 감사합니다 100명을 향해 아자아자
-
돌아왔구나
-
치대 질문질문 2
치과의사가 몸가는 직종이 맞음? 어디까지가 약코인지 모르겠다
-
몰랐엉
-
반드시 이루리
-
레어 경매 글만 거의 150개 있음 ㅋㅋㅋㅋ 이거때매 대거 풀린건가
-
코리안 트레버 정일영 교수님의 수업을 듣기 위해…
-
빠밤빠밤~ 0
아리스가 치유사로 전직했습니다
-
뭐 재수확정이긴했다만 원서접수기간에 대형사건이 터져서 접수못함...(다들 들어보면...
-
제일 비상은 6
거래 준비중인거 대거 풀리는 상황
-
엄준식 1
엄
-
[속보] 빈손 공수처, 결국 오늘 ‘尹대통령 사건’ 검찰에 넘긴다 2
고위공직자범죄수사처(공수처)는 23일 윤석열 대통령의 내란...
-
공군 면접 끝! 4
생각보다 잘한거같음 연습할땐 발음도 잘 안되고 긴장했는데 막상 면접가니까 말 잘 나오네 ㅋㅋㅋ
-
관리자님 제것도 0
-
의대 투표 2
ㄱㄱ
-
흐흐 0
-
재판관 4명 기각, 4명 인용 기각 재판관들 “2인 체제, 방통위법 위반 아냐”...
-
다들 고점이라 놀리는데 카톡 말고 고점 한번도 못봄 9
15만덕 이하면 아직 저점임
-
레어 개선 방안 7
1. 중복된 레어는 승인거절 (완전 똑같은 레어의 경우만) 2. 레어 구매 창에...
-
주형환 저고위 부위원장 "'다자녀 전형' 확대, 대학들 동참해달라" 11
[세종=뉴시스] 박영주 기자 = 주형환 저출산고령사회위원회 부위원장은 교육비 부담이...
-
비상!!!!!!!!!!!
-
이 두개만은 안된다오..
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..