미분가능성에 대한 오개념 잡기
게시글 주소: https://ui.orbi.kr/0003659704
이 명제에 대해서 생각해봅시다. 참이라는 생각이 드시나요?
|
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 가도 한번 더한다 연대치대성적받아놓고 수시납치당했으니 연대치대갈때까지...
-
대입정신병 좀 치료되는듯 삼반수 생각도 좀 줄어드는 것 같고 이제 좀 주체적으로...
-
님들 이과 입시에서 수학이 그냥 압도적으로 중요함? 3
국어 탐구 영어 못봐도 슈학 잘보면 혜택 큼?
-
짤 완성 2
-
열품타 만들면 2
들어올거야?
-
나정도도수학과외할수있을듯 저격은아닙니다~
-
어디서 끝내야 제일 좋았을까
-
수학 질문이요 1
한완기 살때 테마북도 같이 오는건가요? 아니면 따로 사야하는건가요? 현우진 정병호...
-
뻥임뇨
-
죽나요
-
내가 그 산증인이다
-
욕설 불편하셧다면 ㅈㅅ인데 진짜 레전드 ㄷㄷㄷㄷㄷㄷㄷㄷ
-
농어촌 가능합니당
-
그것은 구운미쿠
-
과연 내년 1학기에 의대생들 휴학할지가 너무 궁금... 특히 신입생들
-
25 9월처럼 기하 컷이 미적보다 낮아질 가능성은 제로인가요?
-
비둘기는 잡식성이지만 개중에도 낙엽을 먹이로 삼는다. 가을에 바닥을 쪼고 있는...
-
현 대통령 짤 수집으로 정치적 현안 기르기.
-
의사는 관심없고 1
해부실습해보고 싶어요
-
누워서 쉴때는 그렇게 우울하더니 카페 나와서 공부하니까 삶에 의욕이 생김
-
언제부터 신청인가여
-
Day1에서 주관적으로 허용,불허하지말라고 그렇게 배우고 반복해서 감도 다 잡았는데...
-
( 한국갤럽, 국민 50% "내년도 의대 신입생 인원 조정해야 한다" ) 0
국민들 여론에서 이정도 나오면 ?! '의료개혁'이라는 워딩으로 포장한 의료대란'을...
-
https://www.sdijon.com/course/curriculum ㅈㄱㄴ...
-
근데 자전가면 8
무조건 2전공이상 해야해요? 송영준님께서 경제정치 2개 하셨길래요
-
솔직히 팔로우수는 10
100언저리 아슬아슬할때가 제일 재밌다고 생각해요 안정권인 지금은.. ..
-
과탐 1
23 수능 때 현역이었는데 그때 화1 지1이 각각 38 45점이었거든요 (백분위...
-
아
-
진학사 보는데 다군 성대에서 내가 국수영탐 90 98 2 97 이고 다른 사람이...
-
50일 수학 - 신발끈 및 도형 (이미지t) - 라이트 쎈 수 상하 - 세젤쉬...
-
내가 달고싶구나..
-
[단독]챗GPT, 로스차일드 가문 상속자 'david mayer' 치면 먹통 2
(서울=뉴스1) 손엄지 기자 = 오픈AI의 챗GPT에서 로스차일드 가문 일가인...
-
인서울 지거국만
-
옮만추는 실존할까? 20
흐음..
-
누구길래
-
23학번 애들 보면 분명 내 또래인데 슬슬 괴리감이 느껴짐...
-
재수 시기 5
대충 언제부터 하시는지요 들
-
선 씨게 넘는데
-
옯스타 맞팔9 10
-
시발점 확통 2
이틀전에 이미 시발점 확통을 사버렸는데 지금 확통 들을거면 개정 시발점이 더...
-
이영수쌤 커리를 탈 지, 이명학쌤 커리를 탈 지 고민입니다. 4
이영수의 기출분석은 꼭 풀어보고 싶은데 그냥 영수쌤으로 쭉 갈까요? 아님 이명학쌤...
-
현실은 4등급따리지만 1년.. 아니 2년... 4년이 남았으니까라는 위험천만한 마인드
-
제가 이제 두각에서 수학단과를 한개 다니려고하는데, 그 과목의 단과를 들어야지만...
-
"급발진했어요..." 시청역 사고 이후 급발진 주장 늘었다 [앵커리포트] 3
다시 봐도 안타까운 지난 7월의 서울 시청역 앞 역주행 사고 장면입니다. 9명의...
-
오호..
-
약대 암기력 이해력 안좋은사람이 가도 견딜만한가요? 3
암기력이랑 이해력이 좋은편은 아닌데 가서 견딜만한가요? ㄹㅇ 공대랑 너무 고민되네
-
메가 기준 설대식 403.7 낙지 기준 405.2인데.. 작년 컷이...
-
이건 어떤거같음?
와 정리 좋네요.
그런데 이런 수식은 어떻게 올리신거죠? 그림파일로 올리신건가요?
아까 제가 글 쓸 때도 쓰기 불편해서 혼났는데.;;
그런데 마지막 pf) 두번째줄의 우변이 좀 이상한거 같애요. h→0+ 가 t→-0으로 바뀌어야되는거 아닌가요? 네번째줄도.
헉 미처 수정하지 못한 부분이네요....지적 감사합니다....
그리고 저는 한글2010에서 수식 입력기로 글 씁니다 ㅎㅎ
감사합니다. 그런데 수학 공부하다 이런 Case 보면 극단적인 짜증이 나는 건 저뿐인가요....;;;;
짜증나는 건 당연한 듯 ㅋㅋㅋ....좀 당연하다시피 넘어가고 싶은 내용에 일일이 태클 걸리면서 엄밀하게 파고 들어가면
머리 아프죠 ㅠㅠ...
올ㅋ!
흔히 빠지는 오류 정리 해주셔서 감사합니다.
결론에서 미분가능하다라는 조건이 명시되어 있으면
도함수의 연속성과는 별개로 미분계수의 정의를 쓰지 않고 g'(a)=h'(a) 라고 생각해서 풀어도 무방하다라고 하셨는데,
f(x)=x^2sin(1/x)도 결국에는 전 구간(x=0 포함)에서 미분가능하다고 전제되어 있는 것 아닌가요?
다시 말하자면, 가장 처음에 제시한 명제가 거짓이고 그 반례가 존재하는 이유가
미분계수는 존재하지만 도함수가 불연속인 함수가 있기 때문 아닌가요?
도함수가 전 구간에서 연속인 상태에서 저 명제가 거짓인 경우(반례)가 있나요?
만약에 없다면, 밑에서 예를 들어준 문제도 도함수가 전구간에서 연속이기 때문에
미분계수의 정의에 의한 계산이 아닌 도함수의 극한값으로 미분계수를 대신 구한다고 설명하면 오류가 있는지 지적바랍니다.
도함수가 전구간에서 연속일때는 처음에 제시한명제가 항상 참인듯.
그래서 미분계수랑 도함수의 극한이랑 같기때문에 그냥 대놓고 쓰라는소리같은데요.
처음보여주신식에서 간단히 도함수가 연속이냐 아니냐의 물음으로 치환가능한것 아닌가요?
질문이 있는데 불연속인 함수도 정적분이나 부정적분이 가능하다고 들었는데 고교과정에서 불연속인함수에 관한 적분문제가 포함되는지 궁금합니다...
원래는 안 된다네요. 구간을 나누어서 하면 다시 그 구간내에서는 연속이기 때문에 적분은 가능하지만요. 충분히 구간을 적당히 나누어서 하는 문젠 나올 수 있다고는 생각합니다. 극단적으로 f(x)=1(x가 유리수) or 0(x가 무리수) 이런 건 기존 우리가 알던 빙식으론 불가능하기에,..
그함수요 적분불가능합니다. 리만적분을 배우시면 왜그런지알수있어요 ㅇㅅㅇ
모르면 교과서를 찾아 보세요~~ ^^ 교과서에 나와 있어요..
피적분함수가 연속임을 전제로 합니다..(고등과정에서는)
그리고 대학때는 유한개의 점에서 불연속인거 허용하죠? 리만적분정의하면서요 ㅎ
배울땐 피적분함수가 연속이라 배웠느데 한참 친구들끼리 수학얘기할때 그냥 얼핏 얘기하던게 리만적분얘기였나보군요ㄷㄷ 어디서배웠길래;;
전 대학교 일학년학생입니다ㅎ 중간고사 시험범위에요 ㅎ
네~~ 유한개의 불연속 점이 있는 경우도 적분가능하죠...
truedoor님 네 유한개의 점에서 불연속이고 위로나 아래로 유계하면 정적분이 리만합에 의해 가능합니다 ㅎ
좋은글 이네요 중간고사때 저런 오개념을 갖고있어서 하나 나갔죠..
제가 이 글을 좀만 빨리 봤다면 ㅠㅠ
그러니까 원함수가 미분가능하다면 도함수가 연속함수일 수도 있고, 아니면 빵꾸 뚫린 함수, 그러니까 연속은 아니지만 극한값은 존재하는 함수일 수도 있다는 얘기인가요?
어떤함수가 미분가능하면 원함수는 연속.
어떤함수가 미분가능하다고 도함수가 연속임을
보장할 수는 없습니다. 하지만 도함수가 불연속함수라 하더라도
빵꾸뚫린 불연속함수형태는 나올수는 없고 sin1/x와 같은 형태의 불연속함수만 나옵니다.
이창무T가 생각난다.
좌변=중변 이 맞는 명제이고, 좌변=중변이 우변과 같은지는 별개의 문제인거죠.
오타가 있네요.. f(x)=x^2 sin(1/x)를 가지고 반례를 들은 부분의 네번째 줄
"x=0에서도 가능하다. 따라서 f'(x)는 실수 전체에서 미분가능하다"
라고 하셨는데
f'(x)가 아니라 f(x)로 쓰여야 맞을것 같아요. f'(x)는 x=0에서 연속조차 만족하지 못하는데 f'(x)가 실수전체에서 미분가능할 수 없죠.
오타 맞나요?
문과인데 이 부분 보고 순간 멘붕.ㅠㅠ
으으 아는거같은데 모르는거같기도하고 ....첫번째 도함수연속과 미분가능성의차이는 이해했는데 ....
두번째문제에 미분가능하도록 만들라고했을땐 좌우도함수의 극한값을 이용해도되는이유가 .....?이해가안되네요
으
...;;저도그부분멘붕 ㅡㅜ정의를다시살펴봐야겟으요..
http://joy3x94.blog.me/70166533165
제 블로그 글인데 뭐 거의 같은내용이지만 좀~더 자세한 설명이 있으니 함 읽어보세요 ㅋㅋ
http://joy3x94.blog.me/70166533165
제 블로그 글인데 뭐 거의 같은내용이지만 좀~더 자세한 설명이 있으니 함 읽어보세요 ㅋㅋ
........문과랑도 연관있나요?
이해가 잘 안되는데;;;;
둘다 미분가능한 함수인데 어쨰서 차이가 나는거죠?