2025학년도 강철중 X 설맞이 모의고사 문제지

수학 영역

짝수형

성명		수험 번호		 		 				 	
----	--	-------	--	------	--	------	--	--	--	------	--

- 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

내일 걱정 하나 없이 웃게 되는 그런 날

- 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형 (홀수/짝수), 답을 정확히 표시하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.

※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오
○ 공통과목 1~8쪽
○ 선택과목
확률과 통계 9~12쪽
미적분13~16 쪽
기하······ 17~20 쪽

※ 시험이 시작될 때까지 표지를 넘기지 마십시오.

수학 영역

5지선다형

- 1. $8^{-\frac{1}{4}} \times \sqrt[4]{32}$ 의 값은? [2점]

- ① 1 ② $\sqrt{2}$ ③ 2 ④ $2\sqrt{2}$ ⑤ 4
- $oldsymbol{3}$. 공차가 4인 등차수열 $\{a_n\}$ 이

$$a_1 + a_3 + a_5 = a_2 + 3 \, a_4 + a_6$$

- 을 만족시킬 때, a_4 의 값은? [3점]

- $\bigcirc 1 2$ $\bigcirc 2 4$ $\bigcirc 3 6$ $\bigcirc 4 8$ $\bigcirc 5 10$

- 2. 함수 $f(x) = x^3 2x^2 2$ 에 대하여 $\lim_{x \to 2} \frac{f(x) + 2}{x 2}$ 의 값은? [2점]

 - $\bigcirc -4$ $\bigcirc -2$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 2$
- ⑤ 4
- 4. 다항함수 f(x)에 대하여 f(1)=2, f'(1)=4일 때, 함수 $f(x) \times (3x^2 - 2)$ 의 x = 1 에서의 미분계수는? [3점]
 - ① 12
- 2 14
- ③ 16
- **4** 18
- ⑤ 20

5. $\int_{-k}^{k} (6x^2 + 3kx + k^2) dx = 36$ 을 만족시키는 실수 k의 값은?

[3점]

- ① $\sqrt[3]{3}$ ② $\sqrt[3]{4}$ ③ $\sqrt[3]{5}$ ④ $\sqrt[3]{6}$ ⑤ $\sqrt[3]{7}$

- 6. $\tan^2\theta + 3\tan\theta + 1 = 0$ 일 때, $(\sin\theta \cos\theta)^2$ 의 값은? [3점]

- ① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

- 7. 곡선 $y=x^3-3x^2+a$ 위의 점 (1, 2)에서의 접선과 곡선 $y=x^2+bx+c$ 위의 점 (1,2)에서의 접선이 서로 수직일 때, 세 상수 a, b, c에 대하여 a-b+c의 값은? [3점]
 - ① $\frac{25}{3}$ ② $\frac{23}{3}$ ③ 7 ④ $\frac{19}{3}$ ⑤ $\frac{17}{3}$

 $oldsymbol{8.} \quad a_2 = 9$ 인 수열 $\left\{a_n
ight\}$ 의 첫째항부터 제n 항까지의 합을 S_n 이라 하자. 수열 $\{S_n+4\}$ 가 공비가 4인 등비수열일 때, a_3 의 값은?

 \bigcirc 32

② 36

3 40

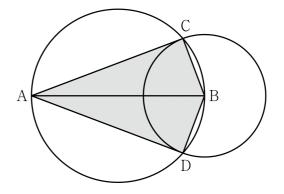
44

⑤ 48

9. 함수 f(x) = ax(x-2)(x-3)과 함수

$$g(x) = \begin{cases} x & (x < 0) \\ 2x & (x \ge 0) \end{cases}$$

에 대하여


$$\int_{0}^{3} g(f(x)) dx = \int_{0}^{3} f(x) dx + 12$$

일 때, 양수 a의 값은? [4점]

① $\frac{9}{2}$ ② 4 ③ $\frac{7}{2}$ ④ 3 ⑤ $\frac{5}{2}$

10. 그림과 같이 길이가 4인 선분 AB를 지름으로 하는 원과 점 B를 중심으로 하는 원이 두 점 C, D에서 만난다. 점 D를 포함하지 않는 호 AC의 길이를 l이라 하고, 점 B를 중심으로 하고 중심각의 크기가 π보다 작은 부채꼴 BCD의 넓이를 S라 하자.

2S = l일 때, 사각형 ADBC의 넓이는? [4점]

① $2\sqrt{5}$ ② $2\sqrt{6}$ ③ $2\sqrt{7}$ ④ $4\sqrt{2}$

11. 수직선 위를 움직이는 점 P의 시각 $t(t \ge 0)$ 에서의 위치 x가

$$x = t^4 - 3t^3 + t^2 + 8$$

이다. 모든 시각 t에서 다음 조건을 만족시키며 수직선 위를 움직이는 점 Q가 존재하도록 하는 정수 k의 최댓값은? [4점]

- (가) 두 점 P, Q의 좌표의 합은 k이다.
- (나) 두 점 P, Q는 만나지 않는다.
- 1
- ② 3 ③ 5
- 4 7
- ⑤ 9

12. |f(0)-g(0)|=1인 두 일차함수 f(x), g(x)에 대하여 부등식

$$\log_2 f(x) < \log_2 g(x)$$

의 해가
$$-1 < x < 3$$
이고, 부등식

$$\log_{\frac{1}{4}}\left(2f\left(x\right)-1\right)>\log_{\frac{1}{4}}\left(2g\left(x\right)-1\right)$$

- 의 해가 -1 < x < 1일 때, g(1)의 값은? [4점]
- ① 2 ② $\frac{5}{2}$ ③ 3 ④ $\frac{7}{2}$ ⑤ 4

- 13. 두 다항함수 f(x), g(x)가 다음 조건을 만족시킨다.
 - (가) 함수 f'(x)-6x의 한 부정적분이 g'(x)이다.
 - (나) 함수 f(x)+g(x)의 한 부정적분이 xg(x)이다.

f(1) = g(1)일 때, g(3)의 값은? [4점]

- ① 12
- 2 15
- ③ 18
- **4** 21
- ⑤ 24
- 14. 한 변의 길이가 1이고 $\angle ABC = \frac{2}{3}\pi$ 인 마름모 ABCD가 있다. 선분 BC 위의 점 P에 대하여 두 삼각형 ABP, ADP의 외접원의 넓이를 각각 S_1, S_2 라 하자.

$$\frac{\pi}{4} \times \! \left(\boldsymbol{S}_{1} \! + \! \boldsymbol{S}_{2} \! \right) \! = \! \boldsymbol{S}_{1} \boldsymbol{S}_{2}$$

일 때, 선분 AP의 길이는? [4점]

- ① $\frac{\sqrt{10}}{2}$ ② $\frac{3}{2}$ ③ $\sqrt{2}$ ④ $\frac{\sqrt{7}}{2}$ ⑤ $\frac{\sqrt{6}}{2}$

15. 함수 $f(x) = \frac{x^4 - k^2 x^2}{16}$ 과 실수 t 에 대하여 함수 g(x) 를

$$g(x) = |f(x)| - tx$$

라 하고, 함수 g(x)가 x=a에서 극대 또는 극소가 되는 실수 a의 개수를 h(t)라 하자.

$$\lim_{t \to 1+} h\left(t\right) < 2 < \lim_{t \to 1-} h\left(t\right)$$

일 때, 함수 h(t)가 t=b에서 불연속인 모든 실수 b의 값의 곱은? (단, k = k > 0인 상수이다.) [4점]

①
$$\frac{1}{27}$$

$$2 \frac{2}{27}$$

$$3 \frac{1}{0}$$

①
$$\frac{1}{27}$$
 ② $\frac{2}{27}$ ③ $\frac{1}{9}$ ④ $\frac{4}{27}$ ⑤ $\frac{5}{27}$

$$\bigcirc \frac{5}{27}$$

단답형

16. 방정식 $\log_3(x-1) = \log_9(3x+1)$ 을 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여 $f'(x) = 4x^3 - 6x$ 이고 f(0) = 4일 때, f(2)의 값을 구하시오. [3점]

18. 수열 $\{a_n\}$ 에 대하여

$$\sum_{k=1}^{5} \left(2 \, a_k - k^2 \right) = 15 \,, \quad \sum_{k=1}^{10} a_k = 70 \,$$

일 때, $\sum_{k=6}^{10} a_k$ 의 값을 구하시오. [3점]

19. 최고차항의 계수가 1이고 최솟값이 -9인 이차함수 f(x)와 상수 a(a>2)에 대하여 함수

$$g(x) = \begin{cases} f(x) & (x < 4 - a & \text{ } \pm \pm x > a) \\ 2x + 4 & (4 - a \le x \le a) \end{cases}$$

가 실수 전체의 집합에서 연속일 때, f(8)의 값을 구하시오. [3점]

20. 실수 k가 두 자연수 $m(m < 1000), \ n(n > 10)$ 에 대하여 다음 조건을 만족시킬 때, $\frac{m+n}{k}$ 의 값을 구하시오. [4점]

k는 $\dfrac{2^{15}}{m}$ 의 세제곱근이고 $m imes 2^{15}$ 의 n제곱근이다.

21. 함수 $f(x) = x^3 - \frac{7}{2}x^2$ 에 대하여 다음 조건을 만족시키는 모든 자연수 a의 값의 합을 구하시오. [4점]

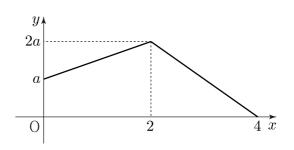
함수 f(x)에서 x의 값이 -1부터 a까지 변할 때의 평균변화율과 f'(c)의 값이 같게 되도록 하는 -1 < c < 0인 실수 c가 존재한다.

22. 좌표평면 위에 자연수 k(k>1)에 대하여 다음 조건을 만족시키는 점 P_n 이 있다.

모든 자연수 n에 대하여 두 점 P_{2n-1} , P_{2n} 의 x좌표는 각각 -k, k이고, 직선 $P_n P_{n+1}$ 의 기울기는 n이다.

점 P_1 의 y좌표가 0이고, 어떤 자연수 m에 대하여 두 직선 $P_m P_{m+1}$, $P_{m+3} P_{m+4}$ 의 교점의 y좌표가 6일 때, k+m의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「**선택과목(확률과 통계)」**문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.


수학 영역(확률과 통계)

5지선다형

23. 다항식 $(x^2-2)^6$ 의 전개식에서 x^6 의 계수는? [2점]

- $\bigcirc 1 200$ $\bigcirc 2 160$ $\bigcirc 3 120$ $\bigcirc 4 80$ $\bigcirc 5 40$

24. 연속확률변수 X가 갖는 값의 범위는 $0 \le X \le 4$ 이고, X의 확률밀도함수의 그래프는 그림과 같다.

상수 *a*의 값은? [3점]

- ① $\frac{1}{5}$ ② $\frac{1}{6}$ ③ $\frac{1}{7}$ ④ $\frac{1}{8}$ ⑤ $\frac{1}{9}$

- 25. 흰 공 5개와 검은 공 3개를 임의로 일렬로 나열할 때, 검은 공이 서로 이웃하지 않게 나열될 확률은? [3점]
 - ① $\frac{1}{14}$ ② $\frac{1}{7}$ ③ $\frac{3}{14}$ ④ $\frac{2}{7}$ ⑤ $\frac{5}{14}$

- 26. 다섯 명의 학생 A, B, C, D, E에게 같은 종류의 공책 20 권을 다음 규칙에 따라 남김없이 나누어 주는 경우의 수는? (단, 공책을 받지 못하는 학생이 있을 수 있다.) [3점]
 - (가) 학생 A는 학생 B보다 공책을 8권 더 많이 받는다.
 - (나) 세 학생 C, D, E는 모두 학생 B보다 공책을 더 많이 받는다.

- ① 60 ② 70 ③ 80 ④ 90
- 5 100

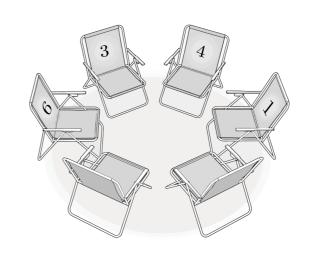
수학 영역(확률과 통계)

27. 정규분포 $N(m, 5^2)$ 을 따르는 모집단에서 크기가 n인 표본을 임의추출하여 구한 표본평균을 \overline{X} 라 하자.

$$P(\overline{X} \leq m) = m,$$

 $P(\overline{X} \ge \sqrt{n}) = 0.0668$

z	$P(0 \le Z \le z)$
1.0	0.3413
1.5	0.4332
2.0	0.4772
2.5	0.4938


일 때, $m \times n$ 의 값을 오른쪽

표준정규분포표를 이용하여 구한 것은? [3점]

- ① $\frac{9}{2}$ ② 8 ③ $\frac{25}{2}$ ④ 18 ⑤ $\frac{49}{2}$
- 28. 1부터 8까지의 자연수가 하나씩 적힌 8개의 의자 중 1이 적힌 의자를 포함하여 6개를 택해 일정한 간격을 두고 원형으로 배열할 때, 다음 조건을 만족시키도록 배열하는 경우의 수는? (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]

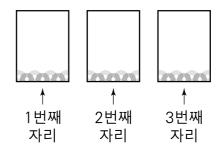
서로 이웃한 2개의 의자에 적힌 수의 곱이 4의 배수이거나 6의 배수이다.

- ① 60
- \bigcirc 72
- ③ 84
- **4** 96
- ⑤ 108

단답형

29. 이산확률변수 X가 가지는 값은 1부터 4까지의 자연수이고 이산확률변수 Y가 가지는 값은 1부터 8까지의 자연수이다. 상수 a와 8 이하의 모든 자연수 n에 대하여

$$P(Y=n) = \begin{cases} \frac{2}{3} \times P\left(X = \frac{9-n}{2}\right) & (n \text{ or infollows}) \end{cases}$$
$$a \times P\left(X = \frac{n}{2}\right) & (n \text{ or infollows}) \end{cases}$$


이고 $E(X) = \frac{13}{5}$ 일 때, E(30Y)의 값을 구하시오. [4점]

30. 3장의 카드가 그림과 같은 3개의 자리에 각각 앞면이 보이도록 놓여 있다. 이 3장의 카드와 한 개의 주사위를 사용하여 다음 시행을 한다.

k=1, 2, 3일 때,

주사위를 한 번 던져 나온 눈의 수가 k의 배수이면 k번째 자리에 놓인 카드를 한 번 뒤집어 제자리에 놓는다.

예를 들어, 나온 눈의 수가 4이면 1번째 자리와 2번째 자리에 놓인 카드를 한 번 뒤집어 제자리에 놓는다. 이 시행을 3번 반복한 후 모든 카드가 뒷면이 보이도록 놓여 있을 때, 2번째 시행 후 모든 카드가 앞면이 보이도록 놓여 있을 확률은 p이다. 130p의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「**선택과목(미적분**)」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

수학 영역(미적분)

5지선다형

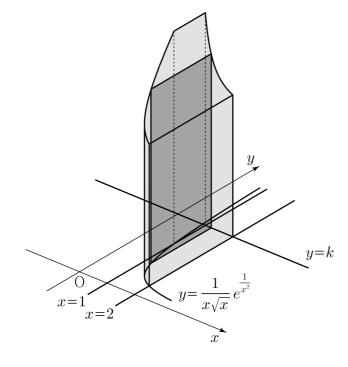
23.
$$\lim_{x\to 0} \frac{4^x - 2^x}{x^2 + 2x}$$
의 값은? [2점]

- ① $\frac{\ln 2}{4}$ ② $\frac{\ln 2}{2}$ ③ $\ln 2$ ④ $2 \ln 2$ ⑤ $4 \ln 2$

24. 매개변수 t로 나타내어진 곡선

$$x = \ln(t^4 + 1), \quad y = \frac{1}{2e^{t-1}}$$

에서 t=1일 때, $\frac{dy}{dx}$ 의 값은? [3점]


- ① $-\frac{1}{4}$ ② $-\frac{1}{2}$ ③ $-\frac{3}{4}$ ④ -1 ⑤ $-\frac{5}{4}$

- ${f 25.}$ 열린구간 (0,2)에서 정의되고 미분가능한 함수 f(x)가 있다. 0 < t < 2인 실수 t에 대하여 곡선 y = f(x) 위의 점 (t, f(t))에서의 접선의 기울기는 $\pi \sec^2 \frac{\pi t}{4}$ 이다.
 - $f(1) = 4 2\sqrt{3}$ 일 때, $f(\frac{4}{3})$ 의 값은? [3점]
 - ① $-2\sqrt{3}$ ② $-\sqrt{3}$ ③ 0 ④ $\sqrt{3}$ ⑤ $2\sqrt{3}$
- ${f 26.}$ 모든 항이 0이 아닌 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$\sum_{k=1}^{n} \frac{a_{k+1} - a_k}{a_k a_{k+1}} = \sqrt{n^2 + 16n} - \sqrt{n^2 + 6n}$$

- 을 만족시킨다. $\lim_{n\to\infty}a_n=\frac{a_3}{6}$ 일 때, a_1 의 값은? [3점]
- ① $\frac{5}{6}$ ② $\frac{5}{7}$ ③ $\frac{5}{8}$ ④ $\frac{5}{9}$ ⑤ $\frac{1}{2}$

27. 그림과 같이 곡선 $y = \frac{1}{x\sqrt{x}}e^{\frac{1}{x^2}}$ 과 세 직선 x = 1, x = 2, y = k(k > e)로 둘러싸인 부분을 밑면으로 하고 x축에 수직인 평면으로 자른 단면이 모두 둘레의 길이가 4k인 직사각형인 입체도형의 부피가 $2e^2 + \frac{\sqrt{e}}{4}$ 일 때, 상수 k의 값은? [3점]

① $\frac{5}{4}e$ ② $\frac{3}{2}e$ ③ $\frac{7}{4}e$ ④ 2e ⑤ $\frac{9}{4}e$

28. 양수 $t(t \le 1)$ 과 함수 $f(x) = \frac{4x}{x^2 + 4}$ 에 대하여 x 에 대한 방정식 f(x) = t 의 실근의 최댓값과 최솟값의 차를 g(t)라 하자.

$$\int_{k}^{1} g(t) dt + kg(k) = 4 \ln 2$$

를 만족시키는 양수 k(k < 1)에 대하여 $k \times g'(k)$ 의 값은? [4점]

단답형

29. 첫째항이 모두 1이고 공비의 곱이 $\frac{1}{4}$ 인 두 등비수열 $\{a_n\}$, $\{b_n\}$ 이 있다. 두 급수 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 이 각각 1보다 큰 실수로 수렴하고, 어떤 자연수 m에 대하여

$$\sum_{n=1}^{\infty} a_n b_{2n} \times \sum_{n=1}^{\infty} a_{2n} b_n = \frac{1}{m}$$

일 때, m의 값을 구하시오. [4점]

 ${f 30.}$ 최고차항의 계수가 양수인 일차함수 f(x)와 k>1인 상수 k에 대하여 함수

$$g(x) = \frac{\sin f(x)}{k - \cos f(x)}$$

가 x=a에서 극대 또는 극소가 되는 모든 양수 a의 값을 작은 수부터 크기순으로 나열할 때, n번째 수를 a_n 이라 하자.

$$\left\{f\left(a_{n+1}\right)-f\left(a_{n}\right)\,\middle|\,\,n$$
은 자연수 $\right\}=\left\{f\left(0\right),\,2f\left(0\right)\right\}$

이고 $a_5-a_2=2$ 일 때, $100 imes (k+a_1)$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시으
- 이어서, 「**선택과목(기하)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

수학 영역(기하)

5지선다형

- 23. 좌표공간의 두 점 A(1, a, 4), B(4, 2, 10)에 대하여 선분 AB를 1:2로 내분하는 점의 좌표가 (2,0,b)일 때, a+b의 값은? [2점]
- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

24. 포물선 $y^2 = 8x + 16$ 위의 제1사분면에 있는 점 P에 대하여 $\overline{OP} = 8$ 일 때, 점 P의 y좌표는? (단, O는 원점이다.) [3점]

① $2\sqrt{10}$ ② $2\sqrt{11}$ ③ $4\sqrt{3}$ ④ $2\sqrt{13}$ ⑤ $2\sqrt{14}$

25. 두 벡터 $\stackrel{
ightarrow}{a}$, $\stackrel{
ightarrow}{b}$ 에 대하여

$$|\overrightarrow{a} + \overrightarrow{b}| = 2$$
, $|\overrightarrow{a} - 2\overrightarrow{b}| = 3$, $\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{6}$

일 때, $|\overrightarrow{b}|^2 - |\overrightarrow{a}|^2$ 의 값은? [3점]

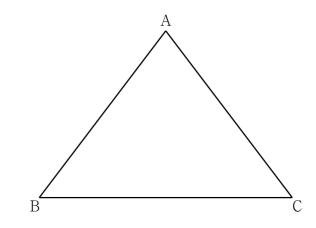
- ① $\frac{1}{6}$ ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$ ⑤ $\frac{5}{6}$

- **26.** 좌표평면에서 점 $(2\sqrt{3}, 0)$ 에서 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 에

그은 한 접선의 접점이 $(\sqrt{3}\,,1)$ 일 때, 이 타원의 두 초점 사이의 거리는? (단, a, b는 양수이다.) [3점]

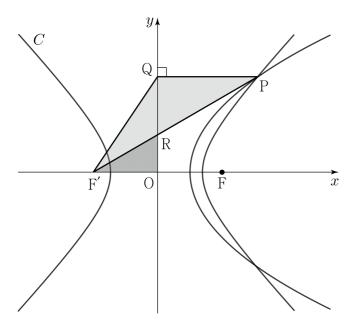
- ① 2 ② $2\sqrt{2}$ ③ $2\sqrt{3}$ ④ 4 ⑤ $2\sqrt{5}$

27. 좌표공간에 구 $S: (x-1)^2 + (y-2)^2 + z^2 = 9$ 가 있다. 구 S가 zx 평면과 만나서 생기는 원을 C_1 이라 하고, 구 S가 yz평면과 만나서 생기는 원을 C_2 라 할 때, 점 (1,1,0)을 지나고 xy평면에 수직인 평면 α 가 다음 조건을 만족시킨다.

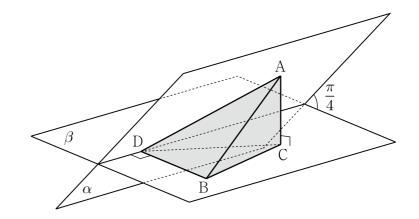

원 C_1 의 평면 lpha 위로의 정사영의 넓이는 원 C_2 의 평면 lpha 위로의 정사영의 넓이와 같다.

평면 α 가 xy 평면과 만나서 생기는 직선의 x 절편이 양수일 때, y 절편은? [3점]

- ① $\frac{11}{8}$ ② $\frac{13}{8}$ ③ $\frac{15}{8}$ ④ $\frac{17}{8}$ ⑤ $\frac{19}{8}$


- **28.** 좌표평면 위에 $\overline{AB} = \overline{AC} = 10$, $\overline{BC} = 12$ 인 삼각형 ABC가 있다. 삼각형 ABC의 내접원 위를 움직이고 $\overline{PQ} = 4\sqrt{2}$ 인 두 점 P, Q와 $\overrightarrow{AR} \cdot \overrightarrow{BR} = 0$ 을 만족시키는 점 R에 대하여 → · QR 의 최댓값은? [4점]

 - ① $36+20\sqrt{10}$ ② $38+16\sqrt{10}$
- $36+16\sqrt{10}$
- $4) 38+12\sqrt{10}$ $5) 36+12\sqrt{10}$



단답형

29. 두 점 F(2,0), F'(-2,0)을 초점으로 하는 쌍곡선 C가 있다. 점 F를 초점으로 하고 y축을 준선으로 하는 포물선이 쌍곡선 C와 만나는 점 중 제1사분면에 있는 점을 P라 하자. 점 P에서 y축에 내린 수선의 발을 Q라 하고, 선분 PF'이 y축과 만나는 점을 R이라 할 때, 삼각형 PQF'의 넓이는 삼각형 ORF'의 넓이의 $\frac{15}{4}$ 배이다. 쌍곡선 C의 주축의 길이를 $p+q\sqrt{33}$ 이라 할 때, q-p의 값을 구하시오. (단, O는 원점이고, p와 q는 유리수이다.) [4점]

30. 그림과 같이 $\overline{AB} = 6$ 인 평면 α 위의 점 A, 평면 β 위의 점 B가 있다. 두 평면 α , β 가 이루는 각의 크기는 $\frac{\pi}{4}$ 이고, 직선 AB가 두 평면 α , β 와 이루는 각의 크기가 각각 $\frac{\pi}{6}$ 이다. 점 A 에서 평면 β 에 내린 수선의 발을 C라 하고, 점 B에서 두 평면 α , β 의 교선에 내린 수선의 발을 D라 하자. 사면체 ABCD의 부피를 V라 할 때, $\sqrt{2} \times V^2$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시으

※ 시험이 시작될 때까지 표지를 넘기지 마십시오.