[박수칠] 도형에 대한 삼각함수 극한 문제... 2017 수능에서는?
게시글 주소: https://ui.orbi.kr/0007756992
박수칠_삼각함수의_극한-도형.pdf
다들 알고 계시다시피 2017 수능에 처음으로 적용되는
2009 개정 교육과정에서는 사인법칙과 코사인법칙이 삭제되었습니다.
도형에 대한 삼각함수 극한 문제에서 잘 써먹던 도구였는데
이걸 없애다니! 웬열?
(얄궂게도 문이과가 통합되는 2015 개정 교육과정에서는 다시 포함됩니다.)
이 때문에 기출문제를 풀 때 교과서적인 접근법에 변화가 불가피해졌습니다.
사인법칙, 코사인법칙이 필요한 상황에서는 삼각함수의 정의를 이용할 수 있도록
수선을 내려 직각삼각형을 만드는 과정이 필요해진거죠.
간단하게 설명하면 다음과 같습니다.
아래 그림과 같이
삼각형 ABC에서 두 내각 A, B의 크기와 한 대변 AC의 길이가 주어질 때
나머지 대변 BC의 길이를 구하기 위해
점 C에서 변 AB로 수선을 내려서 두 직각삼각형 CAH, CBH를 만듭니다.
그러면 삼각항수의 정의를 이용해서
다음과 같은 방법으로 변 BC의 길이를 구할 수 있습니다.
아래 그림과 같이
삼각형 ABC에서 두 변 AB, AC의 길이와 끼인 각 A의 크기가 주어질 때
나머지 변 BC의 길이를 구하기 위해
점 C에서 변 AB로 수선을 내려서 두 직각삼각형 CAH, CBH를 만듭니다.
이때도 삼각함수의 정의를 이용해서
다음과 같은 방법으로 변 BC의 길이를 구할 수 있습니다.
피타고라스의 정리를 적용하는 부분이 복잡해 보이지만
실제 문제에서 저런 계산까지 할 가능성은 높지 않습니다.
삼각함수의 값을 알고 있는 특수각들이 적절히 배치되니까요.
충분한 예시를 위해 첨부 파일에
최근 3개년 수능/모평에 실린 도형에 대한 삼각함수 극한 문제와
교과서적인 접근법을 실었으니 참고하시기 바랍니다.
그런데 말입니다...
2017 수능에서도 도형에 대한 삼각함수 극한 문제가
최근 3개년 수능/모평(작년 수능 제외)과 비슷한 유형으로 출제될까요?
(여기서부터는 제 개인적인 견해입니다.
왜냐? 수능/모평 문제는 평가원 맘이니까요.)
우선 사인법칙, 코사인법칙이 교육과정에서 빠졌기 때문에
두 법칙으로 시간적, 계산적인 이로움을 볼 수 있는 문제는 빠질 가능성이 많다고 봅니다.
그렇지 않으면 두 법칙을 배우지 않은 현역이 불리해지니까요.
2009 개정 교육과정에 대한 교육부 고시의 내용도
삼각함수 극한 문제의 약화를 예고하고 있습니다.
에이~ 언제부터 평가원이 교육부 고시를 따랐다고...
그럼 2007 개정 교육과정에 대한 해설서와 비교해봅시다.
오호~ 이때는 삼각함수 극한이 중요하댑니다.
뭔가 바뀌긴 바뀌었네요.
그리고 한가지 더!
2016학년도 수능 B형 28번을 살펴봅시다.
예전과 다르게 방정식의 그래프를 이용한 문제로 바뀌었습니다.
(첨부 파일에 시간 순으로 배열된 9개 문제를 비교하면
차이를 쉽게 알 수 있습니다.)
이 문제가 도형에 대한 삼각함수 극한 문제의 유형 변화를
예고하고 있지 않을까요?
2017 수능에서는 미적분2의 비중이 많이 줄었습니다.
대신 확통에서 변별력 문제가 출제될 가능성이 높아졌고,
새롭게 기벡에 포함된 평면곡선의 접선에 대한 미분,
평면운동의 미분/적분 문제가 존재감을 드러낼 가능성이 많아졌죠.
이런 상태에서 세 과목의 균형을 맞추면서
미적분2의 핵심 - 미분법/적분법 - 에 대한 변별력 문제를 출제하려면
도형에 대한 삼각함수 극한 문제가 쉬워질 것이고,
그래프 문제 또는 지수함수, 로그함수와의 통합 문제로 바뀔 가능성이 높다는 거죠.
그렇다고 기출 필요없단 얘기는 아닙니다.
도형에 대한 삼각함수 문제는 극한 뿐만 아니라 덧셈정리에서도
출제 가능하기 때문에 기출은 기출대로 공부해야죠~
동시에 지수함수, 로그함수, 삼각함수 극한에 대한 그래프 유형도
신경쓰시라는 겁니다.
그럼 전 20000 ^^
[알림] 박수칠 수학 부교재 미적분2-삼각함수 단원을 아래 링크에 업로드했습니다.
이번에도 본교재 문제 외에 최근 3개년 수능/모평 기출 포함 40문제가 추가되었습니다.
다음에 작업할 교재는 미적분1-수열의 극한/급수이며, 2월 1일경 업로드 예정입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
외대 소수어과 점공 표본수가 아직도 19명인데 원래 이렇게 적나요? 너무 적어서...
-
일상 생활은 안하나
-
보통 힉교선생이 하라는대로 하는게 대다수인 친구들은 허수거나 개고수이거나.. 보통...
-
이번 편은 제가 이번 학기에 '인공지능 윤리'라는 수업에 발표한 내용을 바탕으로...
-
진짜 395정도까지 표본이 11등정도까지 오밀조밀 붙어있었음 그래서 여긴...
-
다소의역) 이전탑들은 자원을 투자해야 능력치를 낸다 0
??? : 자원이 투자되지 않은 상황에서도 최대한의 포텐셜..어쩌고..
-
초반 노래 분위기랑 후반분위기가 ㄹㅇ개달라서.. 개좋음
-
수능 그 자체를 목적으로 생각하면 왠지모르게 기대되고 즐거움
-
점공 좃망 ㅋㅋ 2
12명 중 12등 대성패스 사러감 ㅅㅂ
-
오늘은 할 일이 0
너무 많네요...ㅠㅠ 헤르미온느가 되.
-
지금 미적 강기원 공통 장재원 듣고 있는데 장재원쌤 과제 량이나 난도나 퀄리티는...
-
오늘 하루도 힘차게 살아보자고!
-
확통 쎈b 풀려는데 1. 첨풀땐 딴데다 옮겨풀고 2회독할때 전문항을 다시품? 2....
-
좋아요 구독 부탁드립니다.
-
토-일-월 3일동안 1/6수강 => 18일완강 가능 => 1월에 끝
-
점공인원이 줄더니 내가 2등 올랐어 정말뭘까
-
퇴근했을때도 그렇고 나중에 계좌에 돈 들어오고나면 일하길 잘했단 생각이들어요 열심히하고와야지
-
이런
-
점공 그만들어와라 11
들어올거면 내 뒤로 들어와 미친놈들아
-
배꼽이 없단 걸 의식하고 걱정하지 않으려고 용을 쓰는데 뜻대로 안되는 주인공처럼...
-
매운거먹고싶다 8
속이 근질근질하구먼
-
같은 팀원들 점수 깎인다고 걱정해주던데 ㄹㅇ 착한 도람쥐임....
-
"부처를 만나면 부처를 죽이고, 조사를 만나면 조사를 죽일 것이며, 아라한을 만나면...
-
오늘 안 상식 2
베르무트는 와인이라서 냉징보관을 해야한다
-
알바가기 귀찬아 2
ㄹㅇ그냥 퍼질러자고싶음
-
낼모레는 가네
-
얼버기 5
-
이제 자러가야지 1
좋은 밤 되세요
-
하지만 잇올을 간당
-
ㅇㅂㄱ 9
-
5~6등급인데 션티 들으려고합니다.
-
밖에나가서 공부할라믄 돈이드니까 돈을 최대한아끼려면 집에서 공부해야하는데 집에서는...
-
얼버기 5
갓생 1일차.
-
얼버그 0
얼버그는 얼버기와 레버기에 잡혀먹는다
-
얼버기 4
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 4
부지런행
-
확통 미적 고민 10
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
전 게이가 아닙니다.
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 4
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
항상 수고하십니다^^ㅎ
항상 감사합니다 ^^V
16수능 28번 풀면서 시험에 기출이 나온줄 알고 깜놀했었어요 ㅋㅋㅋ
동감.. ㅋㅋㅋㅋ
11수능 판박이죠.
지수함수가 로그함수로 바뀐 것만 빼면...
& 기출 공부의 중요성!
저는 지금 기출 잘못올리신줄....
같은 생각 한 분들 좀 있으신듯... ^^
확률과통계에서 경우의수세는문제랑 이항정리단원말고 또 어렵게 변별력있게 나올수있는 단원이 어디에요?
통계부분은 대부분문제집이 그냥 공식대입->답 이렇게 되있던데.
어렵게 나올 부분 꼽으라면... 확률이죠.
통계 부분은 개념이 상당히 어렵습니다. 생소하기도 하구요.
그러다 보니 개념을 깊이 있게 이해해야하는 풀 수 있는 문제는 별로 없었습니다.
핵심만 알면 쉽게 풀 수 있는 문제 위주였죠.
그런데 확률은 반대입니다. 개념은 쉽지만, 유형의 변화가 상당합니다.
기억에 남는 문제는 2011학년도 9평 가형 24번인데
(스티커 1개, 2개, 3개 붙은 카드 세 장이 있는데
3으로 나눈 나머지가 어쩌고 저쩌고...)
확률의 곱셈정리 문제긴 한데 확률 자체를 구하기가 참 어려웠죠.
어쨌든 체감 난이도는 확률 쪽이 가장 높을거라 봅니다.
감사합니다!
가형에서 10 10 10 똑같이 안나오고 미적 11~12문제 확통 8~9문제 나온다네요...
어디서 얻으신 정보인가요?
예전에 검색으로 10-10-10문제 나온다는 걸 보긴 했는데
출처가 불분명해서 참고만 하고 있었거든요.
출처 좀 알려주시면 매우 감사하겠습니다... ^^
스카이에듀 모 선생님 말 인용일겁니다.
그 선생님은, 올해 수능 출제? 아니면 검토하셨던 분들 이안기라는데요.
아 그렇군요. 감사합니다 ^^
이투스 수학선생님도 그렇게 예상하신다고 확통 수업시간 짧게잡으셨어요
대체적인 예상이 그런가 보네요.
하긴... 미적분2 학습량이 확통에 비해 많다 보니
단순히 10-10-10으로 가는 건 여러 모로 문제가 생기겠죠.
저거나온 sinx관련내용 어디보면나와요?? 그 교육부고시?? 이거어디있는지보고싶은데..
sinx 관련 내용은
기존 교육과정식 접근법과 개정 교육과정식 접근법을 비교하기 위해
제가 만든 내용이구요, 굳이 공부하실 필요는 없습니다.
사인법칙, 코사인법칙 적용 상황과 비교하지 말고
그냥 문제에 주어진 변의 길이, 각의 크기를 활용할 수 있도록
직각삼각형을 그리기만 하면 돼요.
그리고 교육부 고시와 교육과정 해설은 아래 링크의
국가교육과정 정보센터 자료실에서 볼 수 있습니다.
http://ncic.kice.re.kr/mobile.dwn.ogf.inventoryList.do
헐 그럼 17수능 보는 문과생도 삼각함수 법칙 알아야 하는건가요 ㅜㅜ
문과는 삼각함수 안배우잖아요.
몰라도 아~무 문제 없습니다.
수고하십니다!
감사합니다!
제 생각과 비슷하시네요! 코사인법칙을 쓸수있는 문제가 나오면 배우지않은현역에게 불리함이 생기기때문에 쓸수없는문제로 나오겠지요
아무래도 그런 방향으로 가겠죠.
교육과정 차이 때문에 차별이 생겨서는 안되니까요.
수학 지금 바뀐 교육과정이 언제까지 가나요 동생이 예비중3인데 그때까진 지금꺼 유지인가요?
2015개정 교육과정은 2018학년도 고등학교 신입생부터 적용 예정입니다.
예비 중3이면 올해 수능과 같은 2009 개정 교육과정에 해당되네요.
근데 올해수능 사인코사인법칙없어졋다해도 코사인제이법칙같은거 쓰면 다풀리죠? 그래도알아두는게 더 유리하다고판단되어지는데요..
본문에서 하고 싶었던 얘기는 '사인법칙, 코사인법칙 적용이 유리한 문제는
나오지 않을 것으로 예상된다'입니다. 하지만 평가원의 속내를 정확하게
알 수는 없으니 따로 공부해두는 것도 좋겠죠.
박수칠 교재 구매생각중인데요.. 인강듣고 개념이해+암기중입니다 이책으로 복습할겸 책 통째로 외워도 좋을까요? 설명하면서 외우는거요 ㅎㅎ
+ 기벡은 언제 출간하나요
수학 공부를 하다 보면 이해를 기반으로 암기하는 것이 중요하죠.
처음엔 암기 비중이 높더라도 개념 반복해서 공부하고, 문제 풀이
계속하면서 이해도를 점점 끌어올리면 될 것 같습니다.
그리고 기벡은 확통 나온 다음에 쓸거라 내년 초쯤에나
가능할 것 같네요 ^^;
이번년도 재수하는 작년6등급이과학생이였는데 수1수2미적1 공부를 다하는기 좋을까요??..주위에 물어볼사람이없어 전문적인 분께 물어보고파 댓글남기네요ㅠㅠ
수1, 수2는 기본만 파악하면 됩니다.
교과서 또는 기본서의 기본 개념/예제 부분만 공부하시면 돼요.
그런데 미적분1은 좀 다릅니다.
미적분2와 연결되는 부분이 너무 많거든요.
기본서 또는 개념 인강을 마친 후에
기출문제까지 푸는 것이 좋을거라 생각됩니다.
아그럼 수1수2는 동생교과서로 얼릉돌리고 미적1은 개념서 하나 사서보면 되려나요??
또한 어느정도 시간을 잡고 하는게 좋을까요?
질문이 되게 흐리멍텅해서 죄송합니다ㅜㅜ너무 불안해서요
수1, 수2는 그 정도면 되고,
미적1은 기본서+기출까지 해야할듯 싶습니다.
전체적인 진도는
6월, 9월 모평 범위에 맞춰서 나갈 수도 있지만
갓스물님의 경우엔 기본이 부족할 거라 생각되기 때문에
기본서나 개념 인강으로 미적1, 미적2, 확통, 기벡 개념/유형을 한 번 돌린
후에 복습+기출로 가는 것이 효과적일 것 같습니다.
미적1~기벡까지 개념/유형 한 번 돌리는 건
못해도 5월말까진 완료하고, 기출로 들어가야
9월 모평 일정에 맞출 수 있습니다.
지금 3월 한달내내 기본서를 돌리고 4월부터 6월전까지 알파테크닉같은 인강을 돌려서 한번더 정립후 문제에 대한 접근에 들어가려하는데 이렇게 하면 괜찮을까요?
네 괜찮을 것 같습니다.
그런 식으로 6평 전에 기본을 완전히 끝내고
기출 분석+실모 연습은 9평에 맞출 수 있으면 좋겠습니다.
감사합니다 선생님 열심히 해볼게요:)
열심히 하시고, 나중에 꼭 좋은 소식 들려주세요~ ^^