미적분 문제 (2000덕)
게시글 주소: https://ui.orbi.kr/00071716950
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과탐 투투조합 7
설의 빼고 다른 메쟈의에선 손해보는 조합인가...?
-
。◕‿◕。 12
뭘 봐 。◕‿◕。
-
물지 2
돌림힘 부력 ㅈ같아서 물투했던 그시절 물투지킴이가 보기에 물1 지@랄 나는 건...
-
부모님이 반대할때 다들 어떻게 설득하셨나요 ??
-
8년 전 오르비에는 ㅠㅠ
-
마우스 말고 뭐로 함? 뉴비임
-
공부하러가즈아 0
가즈아
-
범바오는 스킬을 쓰지 않아요 스블 수1 22강
-
뭐랄까 사회의 악을 처단하는 느낌 검사급으로 멋있는듯
-
하 ㅈㄴ하고싶다. 12
미칠 거 같아 막 그냥 너만 보면 하앍 돌겠네
-
.
-
애케플 애매하네 6
근데 보증 기간이 너무 짧은거아닌가 2년은 좀
-
제가 봤을 때 작년 5모에서 21번이 제일 어려웠음
-
자연스러운 욕구임?
-
전 06이에요
-
하루를 시작하자
-
옵치 ㄱㄱ혓. 7
버스기사 출동한다
-
온라인 커뮤니티서 ‘헌재 폭동’ 모의 정황…경찰, 작성자 추적 중 2
서울서부지법 폭력난동 사태 직전 불법 행위를 사전 모의했다는 의혹이 제기된 온라인...
-
옵치하러가는중 3
뒤쟛다 ㅋㅋ
-
ㅋㅋㅋ
-
미나미노 카제니 놋테 하시루와
-
평소이 버스가 정류장 한참 둬에 섯을때 거까지 뛰어타도 앞에서 타라고 손짓하시는...
-
Ebs수특 영어 필수로 풀거나 하나요???
-
뭔가 비킬러 기조에서 잘만든 느낌이 있었어
-
탈퇴하기가 안보여서요
-
사탐이정배다 2
메디컬에서 대깨설까지 커버가능한 사탐을하자 흐흐흐흐흐
-
삼수 시작할때도 14
대깨 투과목 했음 18수능 수학 5등급이었어도 서울대의 꿈은 못 버림...
-
n제 0
샤인미 설맞이 포카칩 이로운 지인선 설명좀 부탁드립니다
-
버스에서 창가 쪽 자리 비워두고 굳이 복도 쪽부터 앉는 사람들 보면 개때리고...
-
ㅎㅇ 1
제곧내
-
물2는 서울대 보는거 아니면 백분위가 너무 박살이라 굳이 안하는걸 추천합니다 만점이...
-
점메추받 6
습니다
-
대학교 위치 0
대학교 위치가 금천구 시흥동이면?
-
투:예상보단 컷이 높지만 그럴만한 적절한 난이도 사탐:천국...
-
중대식으로 746.50인데 추합 가능성 있을까요? 몇점 정도에서 끊기는게 정배인가요..?
-
흐흐 3시간만 하면 퇴근이당
-
서울대공대 생각있는데 거친다면 생기부면접인가요? 아니면 제시문면접인가요?
-
특히 국어에서 몇번이 더 정답으로 많이고를것같냐고 그런거말고 두번째로...
-
ㄱㄱ
-
작수 5였고 재수하는데 뭘로 하면 좋을까요 작년엔 김승리 들엇는데 올핸 메가만 끊어서 ㅠ
-
ㅈㄱㄴ
-
우석약 빠질게요 4
제주수의 제발 붙여주세요~~추합되면 우석약 빠집니다!
-
6평 해보고 사문돌릴지도
-
잊음을 논함 3셋인데 정작 잊음을 논함은 쉬웠음
-
사회문화 같은 허접이랑은 비교도 안되게 강력해요오오..
-
ㅅㅅ용 기구인지 모르겠음 씨발 진짜 너무함
-
국어는 살면서 공부해본적 없고 이번에 올오카 오리진 25수능 1-34번까지 2시간...
-
중량스쿼트랑 레그프레스 너무 힘들어요…
-
고3때 나... 5
포켓몬스터 블랙,블랙2,소울실버 클리어 응원하는 축구팀(2개) 경기 다 챙겨보기...
-
국어- 강기본 3권+ 마더텅 문학독서 일부(2주간 하루 총 2,3지문정도 할겁니다!...
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!
![](https://s3.orbi.kr/data/emoticons/oribi_animated/009.gif)
막혓다저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?
![](https://s3.orbi.kr/data/emoticons/oribi_animated/030.gif)
넹..ㅜㅜ
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다!
+f(x)를 x=0일때 0, x>0일때 xlnx로 두면
f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)
![](https://s3.orbi.kr/data/emoticons/dangi_animated/020.gif)
n=1일때만 따로 계산해주고 n=2일때부터 극한취해서 구할 생각은 못해봤네요문제재밋습니다!
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n²
∫[1, n] xlnx dx = L[n]
L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1]
(y = xlnx는 x ≥ 1/e일 때 증가)
L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n)
L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1
L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1
L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²)
L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²)
lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4
∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4
샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다