무브
오르비
아톰
내 태그 설정
bdfh [1232233] · MS 2023 · 쪽지
게시글 주소: https://ui.orbi.kr/00071716950
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!
저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다! +f(x)를 x=0일때 0, x>0일때 xlnx로 두면 f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n² ∫[1, n] xlnx dx = L[n] L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1] (y = xlnx는 x ≥ 1/e일 때 증가) L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n) L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1 L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1 L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²) L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²) lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4 ∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4 샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다
#공지 오르비 게시판 및 회원 관리법 (Horus Code) (1.1판)
#제휴사공지 [대성마이맥]★예비고1 신규가입 이벤트★ 09년생 신규가입 시 네이버페이 100% 증정! 0
#제휴사공지 22개 대학교 합격인증자를 위한 채팅커뮤니티, 노크를 소개합니다. 9
#05년생#06년생#입결 오르비 합격조사 이벤트 2025 1차 11
#04년생#05년생#06년생 오르비북스 저자 모집 2025 20
13/12/05 00:35
경희대 경영 예비 0
예비3번이면 거의 붙겟죠?ㅋㅋ
2026 수능D - 278
노베이스 수학전문
수학 하방을 탄탄하게 만들어드립니다!
제발 절 써주세요 노베에서부터 1등급을 찍어낸.
국어, 영어 과외학생 모집 중!
연의정시
문예창작과 정시 3관왕 과외모집
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!
![](https://s3.orbi.kr/data/emoticons/oribi_animated/009.gif)
막혓다저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?
![](https://s3.orbi.kr/data/emoticons/oribi_animated/030.gif)
넹..ㅜㅜ
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다!
+f(x)를 x=0일때 0, x>0일때 xlnx로 두면
f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)
![](https://s3.orbi.kr/data/emoticons/dangi_animated/020.gif)
n=1일때만 따로 계산해주고 n=2일때부터 극한취해서 구할 생각은 못해봤네요문제재밋습니다!
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n²
∫[1, n] xlnx dx = L[n]
L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1]
(y = xlnx는 x ≥ 1/e일 때 증가)
L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n)
L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1
L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1
L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²)
L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²)
lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4
∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4
샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다