수학잘하시는분 저 좀 도와주세요ㅠ제발
게시글 주소: https://ui.orbi.kr/00070202161
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데
수학적 오류가 있을지 너무 걱정돼요...ㅠㅜ
진짜 조금씩만 보시고 충고해주셔도 너무 감사하니까
제발 저 좀 도와주세요...
미적분학은 무한을 사용해 유한을 연구하고, 무제한을 사용해 제한된 것을 연구하고, 직선을 사용해 곡선을 연구한다."라는 문장이 가장 인상깊다. 이 한문장으로 심오하고 단 한 가지 개념을 이해하기 위해서도 방대한 배경지식을 필요로 하는 미적분을 함축할 수 있다는 점에서 그러하다. (거의 선에 가까운)무한한 직사각형들을 통해 평면의 넓이를 구하고 그 넓이들을 통해 입체적인 부피를 구할 수 있게 하는 것과 직선을 통해 곡선을 이해한 대표적 예인 원으로 각각 내접하고 외접하는 정육각형, 정십이각형, 정이십사각형, ... 무한에 가까이 가면 곡선의 형태를 띠게 되는 것을 볼 수 있다.(아르키메데스가 원주율을 구한 방법인 조임법을 기반으로 무한의 원리가 곡선을 이해가능하게 해준다. 아르키메데스는 또 다른 곡선인 포물선의 활꼴의 넓이도 무한히 많은 삼각형 조각으로 이루어져 있다고 재해석하여 구해냈다.)
제논의 양분의 역설, 아킬레스와 거북 역설, 화살의 역설을 미적분학을 이용해 풀이할 수 있다. 예를 들어 초속 1미터로 달리는 거북이 아킬레스보다 10미터 앞에서 출발하지만, 아킬레스가 거북보다 10배 빠르다면 아킬레스는 거북의 출발지점까지 가는 데에 1초 걸린다. 그동안 거북은 1미터를 이동할 것이고 그 차이만큼 가는 데에 아킬레스는 다시 0.1초가 걸리고 이것이 반복되면 무한급수로 1.111...초인 10/9초가 된다는 것을 알 수 있다. 제논은 시간과 공간이 연속적으로 존재한다는 사실 즉, 시공간을 끝없이 계속 쪼갤 수 있다는 것을 역설의 모순을 통한 증명으로 귀류법을 통해 반박한다. 그러나 위에 예로 반박했듯이 따라잡는 간격이 무한히 줄어들어 무한한 시간이 걸린다는 제논의 주장은 줄어드는 거리가 유한한 거리로 수렴하는 까닭에 거짓이 된다. 이로써 우리는 무한에 대해 한층 더 알 수 있다.
무한은 모든 양수보다 작지만 0보다 큰, 한없이 무한대로 작은 수인 무한소의 형태로도 존재한다. 만약 기존의 엑스라는 양이 아주 약간 변해 엑스 더하기 델타엑스가 되었다고 가정하자. 이 경우 입력에 일어난 작은 변화 델타엑스가 작은 변화 델타와이를 이끌어낸다. 그리고 작은 변화 델타엑스가 무한히 작아지면 가장 큰 몫을 제외하고 정답에 기여하는 나머지 몫을 모두 무시하는 사고방식을 적용할 수 있다. 이때의 델타엑스는 디엑스로 변하며 무한소를 디엑스처럼 사용하는 이 방법은 극한을 사용해 바꿔 기술할 수 있다. 그리고 이때의 무한소를 미분소라고 가리키는 것이다. 이 개념을 적용하면 엑스와이 평면 위에 있는 어떠한 곡선 그래프의 기울기는 와이의 도함수이며 델타엑스가 0에 접근할 때 델타와이/델타엑스(분자:델타와이,분모:델타엑스)의 극한값으로 정의된다. 여기에 미분소를 사용하면 디와이/디엑스로 표현된다. 그렇다면 우린 특정곡선 와이는 엑스세제곱의 기울기는 (변화를 나타낼 만한 디엑스 항을 제외한 다른 디엑스제곱, 디엑스세제곱 항은 버리는 식으로 계산하여) 삼엑스제곱임을 구할 수 있다.
(라이프니츠)
(라이프니츠에 가능하다면 적분 내용도 쓰고 싶었는데 짧게 같이 넣을 방법은 없을까요....??)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지균 받을 수 있을 것 같은데 서울대는 무리일까요...?
-
전대 독어독문 0
전대 정시 독어독문 4.67이 붙을수있을까요
-
고2 모고 수학 2-4진동하면 시발점 수분감 루트가 맞는 건가 6
아니면 노베 공수 12루트 찍고 뉴런수분감 병행 루트가 맞는 건가
-
뭐가 당청됐다는 건데 낙지야
-
일단 저는 메가: 현우진, 윤성훈쌤 대성 : 김승리, 션티 임정환쌤 들을건데 이...
-
그 빡센 4합 5 말고 중대식 4합 5 영어2도 영어1로 취급 탐구 1개만 반영
-
???
-
뻥임뇨
-
맞팔해주쇼. 6
50이눈앞임뇨
-
문과 과탐 선택 1
문과 대학 중에 사탐 선택하면 가산점 있다고 들었는데 사탐1, 과탐 1도...
-
ㄹㅇ
-
업데이트하니까 알람센터 위젯 안뜨고 시계도 좌측정렬돼버리는데 이런분 있으신가요?
-
돈좀벌자
-
26수능 준비하는데 김승리쌤 올오카, 유대종쌤 언매총론같은 강의들 25버전으로...
-
쪽ㅈ주세염!!!
-
오늘도 간절히 빕니다...
-
셤공이나해겠어요
-
그치만 한국에선 꼬추떼도 여자로 인정안해주는걸 ㅠ 군대도 안가고 애도 안낳는...
-
새로이사온애가 5
많이 시끄럽다..여긴 방귀만 뀌어도 옆방에 다 들리는 곳인데 참교육해야하나
-
에피츄 vs 센츄 19
뭐가더 공부잘하는거에요
-
이미 다 털렸으려나 좌표 -100, 0
-
으어
-
역시 옯뉴비가 많네요
-
과외를 할 때 실제 간 학벌말고 합격학벌도 보나요? 10
그니까 예를들어 정말 어쩌다 보니 의대랑 서성한을 붙고 의대가 싫어서 서성한을 간...
-
후유증 너무 심해에에에... 치료하려고 애니 2개 더 봤는데도 치료가 안대..
-
혹시 동국대 전자과 수시로 쓰신 분들 질문좀 가능할가요? 1
제가 지금 내신등급이 2,3등급이 많은데.. 둥국대 상위10과목 이면 직접...
-
하냥이 18
너무 귀욥
-
쉬운편인가요?
-
ㅅㅂ 애들이 ㅈㄴ 틀딱 취급하는데 서러워서 어케 살어
-
사탐런이니 지학이니 뭐 이상한 조합이나 이상한 메타도 결국 남들이 하나둘 하기...
-
토익부터 조금씩 8
공부시작해야겟군..근데 뭘로하지
-
임싱했어? 4
어..
-
내신망해서 내신다시만들고싶은데
-
맘만 먹으면 누구나 성별전환 가능한 사회에서 여성욕하는건 어불상설 욕할시간에 여자가...
-
낮공 상관 없이 최대한 어디까지 갈 수 있을까요?
-
⭐ https://forms.gle/hNQQ4e2kbGftj49x9 다름이 아니라...
-
ㅇㅇ?
-
25수능 패스랑 26패스 둘 다 샀는데 기존에 듣던 강의가 내려갔길래 문의해서 수강...
-
07인데 뭐 입시자료부터 인강 다 모르겠어요.. 인강 커리는 언제부터 뜨는지도 모르겠고요..
-
ㅇㅇ 폰중독자임
-
물부으면 물이 스르륵 사라지고 동전이 물티슈로 변신해요 나만 신기해?
-
학원 드디어 퇴사 23
너무 힘들었다 진짜.. 지방이라 잘하는 친구도 몇 없고 수상수하수1수2미적확통...
-
다들 문디컬 갈 거면 언매 미적 해야한다던데
-
롤체 다1찍었다 0
마스터 가보자
-
고1 내신 원하는대로 나올때까지 재도전 하는게 의대 정시 재수 삼수 하는것보다 훨씬 나아보임
-
6평때 메가가 미적 84로 잡았는데 실채 80이었다는거임 항상 실채점 컷이 업체...
-
나가기 귀찮다 10
사실 지금도 약속시간 늦음
-
서성한 내려치기해서 미안하다 훌리들아
첫번째 댓글의 주인공이 되어보세요.