2021연논 질문 하나만 해도 될까여
게시글 주소: https://ui.orbi.kr/00069046060
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
케플러 포함 7종류의 과학탐구 그림을 만들어 보았습니다. 그림에서 "평가원스러움"이...
-
선거보다 어려운내용 없죠? 공부하다가 진짜 헌법재판소보다 몇배는 난해해서 고생 좀...
-
수능 만점 기준
-
얼마전 전역하고 다시 시험준비하려는데 작년까지 대성에 계신거 확인했는데 증발하셨네?...
-
수능날 0
다시 국어 망칠까봐 두렵다..
-
쪽지부탁드립니다
-
문의는 인스타 디엠으로;;;;;;;
-
선생님에게 물어볼 수 있는거?
-
연경제 0
연경제 688도 가능한가요?
-
15시발점 교재랑 워크북있긴함요
-
기분 개같네
-
아침은 2
순대국밥
-
KBS, 尹 대통령 탄핵 찬반 집회 잘못 보도 사과…“관련자 엄정 조처” 2
KBS가 지난 11일 오후 1TV 5시 뉴스에서 윤석열 대통령 탄핵 찬반 집회...
-
서귀포 1989 거제 1930 부산 1576 연표외우듯 외워야하는거임? 설마.. 이...
-
지능이딸려서안되더라 연고라인이 한계인듯
-
재수 1년 지원해주신다 하면 할거임?
-
교과우수라서 내신입력하라는데...
-
오늘은 새르비 안했는데
-
신소재공학과 0
신소재공학과를 들어갈 거 같은데 정보가 좀 없더라구요. 대학 입학하기 전에 뭔가...
-
언매 확통 경제 사문 한문 선택할 것 같슴다!! 확통 하면 서울대 경제 가기...
-
379 미만이네요 이럼 cc빔 엄청셀듯
-
궁금
-
어디라인임? 지거국은 가나?
-
공군에서 군수 시도한 사람 중 95% 이상이 실패하고 2명만 성공했다는 글을...
-
그게 나야 바 둠바 두비두밥~ ^^
-
기하 과외가 아무도 없구만
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][새내기 시간표, 과목 관련 FAQ] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
껍질까고 7
먹기
-
명문대는 밥약 9
미슐랭 식당에서 하나여 동생이 신입생 옾챗방에서 선배들이 막 그랬다구 하던데.
-
관리형 독서실은 0
그냥 집 근처 아무곳이나 가면 되겠죠? 리뷰는 괜찮은거 같더라구요
-
ㅠㅠ
-
이재명 "카톡이 가짜뉴스 성역인가…반드시 퇴치할 것" 2
이재명 더불어민주당 대표가 13일 "카톡이 가짜뉴스 성역인가"라며 '카톡 검열'...
-
똥을 먹어야 설사를 먹게해준다는거 같음
-
한국에서 내세울수 있는 가장 강력한 스펙임 비단 취업뿐만아니라..
-
3칸이었는데 예비120언저리 잡히는거 보면 2칸도 붙을법하겠는데
-
이미 최상위권이라 변동성 적은경우 제외하고요
-
지구과학 안 한지 1년이 넘었다보니까 이제 문제 자체는 기억이 어렴풋이 나는데...
-
ㅇㅂㄱ 8
-
꿈이 가득한 옆동네 보다보면 느낌
-
도형 하나 1
답 자연수아님 풀고나서 98수능 자연 24 0409 예체능 10 같이보기 21경찰대20도?
-
빨리 센츄 줘 3
센츄랑 연뱃 달고싶어
-
오르비도 나름 상위권커뮤랍시고 지능 높은애들 모여있는 곳인데도 매년 수능끝나고 고닉...
-
이거 좀 부럽뇨
-
강제 재수생인데 왜 휴학하는겨
-
수학 상 질문 5
K로 정리해야하나요 x로 정리할까요
-
힝..
-
근데 누군가의 강요가 아닌 자기 손으로 n수 선택해놓고 자기연민에 빠져서...
-
개딸새끼들 6
?
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!