미분가능과 도함수연속성
게시글 주소: https://ui.orbi.kr/00068839810
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
면접까지 끝나니까 정말 뭘해야 할지 모르겠네요..추천해주실수 있나요
-
동생 새끼랑 전쟁 뜨러 간다
-
뀨뀨 15
뀨우
-
언 89 미 82 영 2 생윤 94 사문 94
-
대성캐쉬 남아서 대리구매 해드립니다 인증 가능 진짜임.. 10프로 할인해드릴게요...
-
공모 떨어졌나 0
1주일 전에 보냈는데 아직까지 답장 없는거 보면ㅇㅇ..
-
화들짝!
-
저녁ㅇㅈ 3
배달비 ,매운탕까지 3.8ㄱㅊ한데
-
나 그때 뭐 했지
-
임신함
-
현우진 4
예비 고3인데 수학 상 하 원 투 미적분 확통 전부 시발점 들었습니다. 이번...
-
5군데정도 지원했는데 한군데서 면접 연락오고 나머지는 지원서를 읽지도 않네 원래...
-
남은 6년동안 뭐해야함?
-
이제 좀 의대 붙여주면 안 되냐
-
기절한 다음에 금요일에 일어나고 싶다ㅠ
-
졸업합니다 드디어 아 이번에 대학 못 붙으면 재수하려고요
-
오늘의 명언 바람과 파도는 항상 가장 유능한 편에 선다. 0
the winds and waves are always on the side of...
-
인증해✊✊
-
나 초6땐 1
단원평가 80점받고 학교끝나면 우르르 놀이터가서 지탈하고 컵떡볶이랑 슬러쉬먹고...
-
좋아하는 유튜버입니다. 다른 재밌는 영상도 많아요
-
저런애들 겉만 멀쩡하면 아무차별안겪나?
-
3개월 다니고 때려침
-
꿈을 향해 달리기
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 돌아버리겠네 진짜 가산점 왤케힘드냐
-
지방살고있는데 돈은 문제없구요 어디가 더 좋나요?
-
초6수준 글쓰기가아닌데?
-
사실 네이버카페 포함하면 유치원부터긴함
-
라인좀ㅠ 6
내신 1점 후반인데 교과우수로 고대 안되려나..?
-
다들 급하게 돈 많이 필요할땐 어떻게 벌어? 쿠팡말고 추천좀
-
이원준쌤 커뮤픽 2
원준쌤 자꾸 커뮤픽이라구 하셔서 친구들이 이원준쌤 들을거라하면 커뮤니티하냐고 놀려요 ㅜ(하긴함)
-
싸이의 강남스타일이 나왔다 그때 태어난애가 오르비를한다고? 돌아가....
-
메가대로만 나오게 해주세요
-
얼마나 나요? 지엽적인 거 다 포함했을때
-
추우니 찰떡이군
-
여긴 잼민이들이 너무 많음;;; 힐링게임 하고프다
-
심심하면 답쓰고가주삼 작년에친사람은 예비번호도 써주심 ㄱㅅㄱㅅ
-
커뮤 7년차 1
07년생… 그게바로나야
-
화1보다 어렵네요
-
김승리 풀커리 1
수학 안 하는 사람이면 김승리 쌤 풀커리 안 벅찰까요?
-
팔걸어도되나요
-
3합 4(과탐 1과목) 몇 프로 예상함?
-
탈퇴하려고봤더니 13
이거탈퇴어떻게하지
-
Image caption
-
통합사회과학 보고싶은 어린이들만 과탐하세욧~
-
뭔가 동질감 느껴지노 나는 군대월급으로 책 사려는데
-
https://orbi.kr/00039176755/90%EC%9D%BC%EC%9D%8...
-
나 릴스봐야돼 릴스도끊어야하는데
-
현역 위로는 다 (오르비식) 틀딱이라는 거였는데 시발 시간이 벌써 이렇게 되네 ㅋㅋㅋㅋ
-
선착순 10명 2
천덕만 주세요
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=