7모 미적 손풀이(27, 28, 29, 30)
게시글 주소: https://ui.orbi.kr/00068705978
7모 미적 손풀이.pdf
미진한 실력이지만 올려봅니다.
보충설명을 조금 하자면,
28번은 역함수가 존재하는 삼차함수라고 하였으므로 x^3의 평행이동꼴을 강하게 의심할 수 있습니다. 이것의 논리적 정당화는 다음과 같습니다.
최대 최소를 구하려면 부등식이 필요함 -> 가능한 부등식은 판별식 뿐임 -> 판별식의 경계에서는 x^3 평행이동 꼴임
이렇게 생각하고 빠르게 해결한 뒤 불안하다면 검산하는 것이 좋아보입니다.
29번은 등비수열에 절댓값이 붙은 것을 보고 r<0라는 강한 의심을 할 수 있습니다. 물론 두 급수를 더한 값이 0이라는 시점에서 r>0일 수 없음을 빠르게 파악하는 것이 최선입니다.
삼차방정식에서 뻔히 보이는 한 근이 있다면 다음과 같이 인수분해하는 것도 가능합니다.
20r^3+21r^2-1=(r+1)(20r^2 + -1)로 쓰고, 나머지 빈 항을 r^2의 계수를 이용해 맞춰주면 됩니다. 대부분 경우에서 조립제법보다 약간 빠른 것 같습니다.
마지막 급수의 수렴판단은 결국 '3x(-1)^(n-1)+어떤 등비수열'이 수렴하도록 하는 문제인데, 3x(-1)^(n-1)이 폭이 줄어들지 않고 진동하고 있으므로 반대로 진동하는 등비수열을 더해줄 수 밖에 없습니다.
30번은 적분할 수 없음을 판단하고 행동에 옮긴다면 빠르게 풀 수 있었을 것 같습니다. 그리고 간단하게 보이는 치환꼴이므로 치환해서 접근하면 조금 더 보기 편해지는 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문안해주면 엉덩이 만짐
-
하나는 강평글썻다가 블라먹었고 다른하나는
-
모집합니다 잘 적어주시면 천덕
-
동갑한테 선생님 소리 들을 수 있음
-
옯뉴비 질문 받아요 10
-
9시에 일어나야되는데 ㅈ된거냐?
-
잘 자 6
형은 롤 하러갈게 곧 휴면임
-
그건 메가커피 호랑이 선생님의 감각적 직관 풀이를 비판했던 글입니다 블라글은 안...
-
ㅜㅜ
-
뻥이야
-
없으면 영단어 외우러 가야겟다
-
기억에 남음 그게 오르비친구들이엿음
-
학교다니면서 가장 기억에 남는 흑역사 얘기하기 콘테스트 시작 8
중딩때 너무 급한데 대변기 다 잠겨있어서 소변기에 똥싸다가 선생님한테 걸림
-
신해혁명 기념해서 공화국의 봄이라는 뜻으로 지었었대
-
번호를 내놔라 6
전화를 해주마
-
탑툰 보러감 6
-
오늘의 아침 4
불닭+공화춘 참치마요 삼김
-
난 공용에서 코딱지 파먹는 사람 봄
-
대충 미즈키 짤
-
정수기가 없다는 사실이 나를 미치게함 냉라면 못먹겠네 쿠지라이식 라면이나 먹어야겠다...
-
자려고 누웠는데 잠이 안와서 가장 기억에 남는 글이랑 혜윰님 댓글 달린글 빼고 다...
-
고로 매우 마초적인 행위라고 할 수 있음
-
오늘부터 제 제1 모토는 서로 사랑하며 살자 입니다
-
객관적으론 진짜 개빡센 문제일텐데 또 굇수가 오셔서 20초컷 하실 거 같음..
-
본계정에 여자 비키니사진 좋아요 수만개는 눌러둔거같은데 이거 언제지우냐 대학 가기전까지 지워야하는데
-
없으면 빛삭
-
과시는 결핍이다 5
과시하는 사람은 보통 어딘가에서 결핍이나 열등감을 느끼는 경우가 많았던 거 같음. 아님 말고
-
와 저건 진짜 심하다
-
타비비토노요오니 0
우타카라우타에
-
X카스 같은 매력이 있는듯 인증을 볼때마다 아 괜히봤네; 싶지만 쉽게 끊지 못하는...
-
강아지 잔다 3
기여워요
-
돈으로 환전 가능함?
-
내년에같이컨설팅팀차릴분 20
70만원은 너무 비싸니깐 40~50정도로 가격으로 경쟁력을 가져가는거임 거기에다...
-
방금 시대갤에서 보고 생각난건데 현장에서 1번 보고 너무 대놓고 맞는말만 해서...
-
오늘만큼은 goat인거야
-
실검 1위 찍고 갑니다 10
ㅂㅇ
-
진짜 조심해야하는건 허언증보다는 나르임 허언증은 그냥 정신이 미성숙하고 귀여운거임...
-
빼는 건 그저 그런데 빼고 나서 구멍생기는 게 비호임
-
4합 3 이내를 이렇게 맞추는거였구나
-
왜메인두개갔지 0
-
이참에 딴 사진도 올림 13
임마들은 얼굴안나와서 안지움 우하하
-
이말만 몇번째냐.. 자고 일어나면 밤까진 안들어오는걸 목표로 할게요 응..
-
과잠 꼭 입어보고 싶은데 찾아보니까 1학년은 과잠이 없고 2학년 전공선택때...
-
그냥 간단하게 답변함
-
심심해요
-
스터딘 마크2 신가
-
ㅈㄱㄴ
-
고닥교 친구중에 이재명닮은 애 있었는데 맨날 찢재명이라 놀리다가 크게 혼남
-
ㅁㅌㅊ임
고트
27번은 적분상수 -1을 붙여서 적분하면 편하더라고요
28번 논리적 정당화에 대해 제가 이해한 것이 맞는지 확인해주시면 감사하겠습니다.
최고차1인 3차함수가 역함수를 갖는다<=> f'(x)>=0
f'(0)가 최대가 될 때를 구하려면 등호포함 부등식을 찾아야하는데 생성가능한 부등식은 이차함수의 판별식이고, 최소가 0이다.
도함수의 최소(극소)인 변곡점의 기울기가 0인 x^3의 평행이동 꼴이다.
라고 생각한 것이 맞을까요?
네 맞습니다
감사합니다!