[자작 문항] 6평 대비 22번으로 냈던거
게시글 주소: https://ui.orbi.kr/00068383262
갠적으로 모의고사 하나 만드는 거 보다
감질나게 자작문항 하나하나 올려서 맛 보여주는 게 뭔가 조회수 더 높은듯....
사람들이 관심을 더 많이 가져주는 느낌....
사실 이 문제의 원래 주려던 조건은 f(0)=/=0이었는데....그러면 문제 난이도가 꽤나 상승하는 느낌이 없잖아 있을 거 같아서....문제가 무슨 말하는 지 감을 못 잡겠다고(미리 친구에게 풀려본 결과)하길래....
넵....241122를 모방했습니다....저도 문제 만들면서 ptsd가 심하게 오던ㅋㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 놔두면 어차피 죽을사람 살려놓으면 왜 그딴식으로 치료했냐며 돈물어줘야함
-
오늘 애플스토어가서 보고옴 내일 사기로함
-
진학사 보니까 왤케 큰거같지
-
이정도면 어디가나요 가천대 자연 힘들겠죠?
-
동국대의대면 1
의대 중 어느정도 위치임 지사의? 아님 지거국~지사의 사이? 인식 어때염
-
실제 평가원 등급컷에서도 3합5 4합8 충족할 수 있을까요? 논술이 끝나도 마음이 불편하네요ㅠㅠ
-
흠...
-
여대 이런저런 1
이대가기엔 성적이 부족한데 숙대가 딱 안정으로 나은거같아서 고민인데 또 요즘...
-
1컷 96 2컷 88 3컷 76
-
여쭤봤는데 2등급 블랭크는 쉽지 않아보임 2컷 48은 가능성이 조금 있어보인다 ㅈ됐다 ㅋㅋ
-
의대 순위 1
인하의 가천의 순천향의 서열이 어케됨?
-
하.. 아예 안 해봤으면 모르는데 해 본 기억이 있으니까 힘든듯
-
미적확통표점차 20점차이나기vs 과탐1컷 30점대초반만들기
-
수능만 ㅈㄴ 봤는데 생각하는 힘이 점점 딸리는것같네요 얘도 이제 역량의 한계? 가...
-
복어크기
-
본인 ,, ,, 재밌게 봤어요.
-
화1 만점표점<<<생윤 2틀표점
-
빈순삽 푸는 스타일 두분 다 비슷하신요? 작년 파데 컬미 주간지있어서 V올인원만...
-
는 성적표 발부 2일전? 하루전에 나오는건가요?
-
동덕여대 논술을 3
동덕여고에서도 보고 세화까지도 가서 본다고 하네 ㄷㄷ 어지간히 난장판인가벼..
-
물갈이가 안 돼 ㅉ
-
10월학평 수학 8
"전국 유일1등" 캬....
-
수능 성적 발표 입갤
-
아파서 집 가는게 왜 이렇게 억울하지 잘하고 싶고 열심히 하자고 마음 먹고...
-
미적:아니 나도 잡혔어 (1컷88에서 더 상승예상)
-
내 가슴이 한번더를 외치고있어 이건 해야겠지?
-
그런데 보고오니 생지 컷이 40초중반인것이에요. . . 보자마자 눈물이 났어요
-
게임 속으로 들어가고 싶어
-
아침에 7시 10분 고사장 도착 목표로 생각하고 집에서 6시 45분에 나옴 엄마가...
-
넓죽넓죽은 [넙쭝넙쭉]으로 발음이 된다고 하는데 된소리 되기 후 자음군단순화 된...
-
대대상근 등장 27
그래도 출퇴근이잖아 한잔해~
-
이런 통계가 있고 저런 통계가 있어서 이렇게 저렇게 하면 92 입니다! <<<욕...
-
독하다 독해
-
집 가서 아예 쉴 건 아니고 국어 몇지문이랑 수학 뭐뭐 할거는 가져가서 쉬면서 할...
-
평소에 정시 진짜 잘하는걸로 이름날리거나 수시로 10등권에 있던 애들 : 1틀 2틀...
-
이모네 댁 가서 5일동안 뭐한다고 쓸까요 어떻게든 꽉꽉 채워야 하는데 ㅠㅠ
-
춥네 12
약속 파토내고 싶다 라고할뻔
-
확통만 나오는건가요..? 애초에 준비를 안해서 아직도 갈까 말까 고민중..
-
미기확 다보는학굔데 기하확통 수능끝나고부터 공부해서 내일 수리논술보러간다하면 붙을확률이 있긴할까?
-
사람들의 행복한 미소 넘쳐나요~ this is magic swing
-
기하가 일등급 표점표에서 단독으로 있었던 명수 있었나요? 6
같이 뭉치면 몇명인지 모르니까 작년 기하 89가 몇명인지 알 숯있나 미적 86이랑...
-
사탐중 암기과목 1
뭐가 있나요?!
-
제가 딱 건대는 안되고 동홍숙 정도의 성적인데 서울에서 많이 먼 지방 사람이고...
-
사십만덕까지 4
938덕 님만주면고
-
불과 1주전에 원장연 소리로 오르비 도배되면서 절대 원과목은 하면 안된다는 소리...
-
헤이헤이
-
ㄱㄱ
-
최고의 타워 철거 및 사이드 밀기 능력 동일성장 기준 절대 안밀리는 근접전(궁...
-
왜냐하면 제가 92이기 때문이에요
-
??: 00햄이 옳았습니다.. 이러면서
계산이 0에 수렴이라 맘에 듦
그냥 계산하라고 할 걸 그랬나....그래도 작수22는 해석만 되면 계산이 많은 편은 아니긴 했어요
+0 제외 둘중 하나 미지수로 줘도됨요
이것도 과조건이라면 과조건이라서
사실 이 생각을 못한 것도 아닌데....글에서 말했듯이 말귀를 못알아 먹겠다고 뭐라 하길래...그냥 넣음뇨....
사실 저것도 함수 g(x)=~의 그래프가 로 적는게 맞는데 내가 실수했다 카더라
앞에 함수 있는데 굳이 그래프라는 말을 뒤에 붙여야 되던가....
'함수가 사분면을 지난다' 라는 말은 어색하지
으음 그렇군
이로운에서 비슷한거 봤는데 고트들은 생각이 비슷한가봅니다 ㅋㅋㅋ
이로운에도 이런게 잇었나....23에는 없었던 거 같은데...
2개의 사분면 지나는거 작년꺼수2 풀면거 봤음뇨이
비슷한게 아닌가 아님말고..
글쿤용....주의해서 만들어야겠다....
41
땡
아 사분면이구나
뭔가 -2랑 0을 둘 다 주는 게 과조건같아서 바꿔봤음
이렇게 만들면 더 ㅈ같아질 수도 잇구나....
65???
땡
암산실패 ㄲㅂ
161??
늦었네 ㄲㅂ
161
오 정답
241122같은 느낌 진짜 받았어요
그래서 저도 나름 잘 만들었다고 생각함뇨ㅋㅋㅋㅋ
두개의 사분면만 지난다=원점을 지난다 맞나여??
152/9 맞나요??
정확하내요
(t, f(t))에서의 접선 g(x)가 두 개의 사분면만을 지남
--> g(x) = ax or g(x) = a (a ≠ 0)
(-2, f(-2))에서의 접선이 원점을 지남
& f'(-4/3) = 0 & f'(x) ≥ 0
--> f(x) = 3(x + 2)²x + 4x
∴ f(2/3) = 152/9, p + q = 161
캬ㅑㅑㅑㅑ