[이동훈t] 실전개념의 구체적 활용의 예 (2025 이동훈 기출)
게시글 주소: https://ui.orbi.kr/00067986685
(샘플)_수학1_실전개념+기출_2025_이동훈기출.pdf
(샘플)_수학2_실전개념+기출_2025_이동훈기출.pdf
(샘플)_미적분_실전개념+기출_2025_이동훈기출.pdf
(샘플)_확통_실전개념+기출_2025_이동훈기출.pdf
(샘플)_기하_실전개념+기출_2025_이동훈기출.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
2025 이동훈 기출문제집의
실전개념이
기출문제 풀이와 이해에
얼마나 도움이 되는가 ?
에 대하여
알아보겠습니다.
이 글에 첨부된 5 개의 파일 각각에는
다음의 주제가 포함되어 있습니다.
(각 대단원에서 1개의 주제씩)
수학1
A. 로그함수의 그래프: 좌표평면(직선의 기울기)
B. 코사인법칙: 할선 정리
C. 등차수열의 합: 이차함수(식의 관점)
C. 등차수열의 합: 이차함수(그래프)
수학2
D. 함수의 연속: 분수함수
E. 삼차함수의 그래프: 변곡접선
F. 정적분의 계산: 영역+절댓값
미적분
G. 수열의 극한: 극한의 기하적 해석
H. 초월함수의 미분가능성: 합성함수
I. 넓이: 역함수
확률과 통계
J. 포함 배제의 원리
K. 조건부 확률
L. 정규분포: 대칭성
기하
M. 이차곡선과 접선
N. 벡터의 내적: 최대최소(상수변수)
P. 공간도형: 정사영의 길이와 넓이
위의 15 개의 주제 중에서
수학1, 수학2, 미적분에서
각각 한 주제(보라색)씩을
살펴보겠습니다.
아 ... 그리고 제가 최근에 쓴
ㄱ, ㄴ, ㄷ 문항 구조(지수로그함수)에 대한
글도 학습에 참고하세요.
[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
< 수학1 >
지수함수/로그함수와
고1 과정의 좌표평면(점, 직선, 원, 이동)이
내적 결합된 문제들은
수능에서 자주 출제되고 있습니다.
이 주제에 대해서는
2025 이동훈 기출에서 상당히 자세하게
설명하고 있습니다.
아래는 그 중에서
직선의 기울기(상등, 대소 관계)에 대한
실전 개념 설명입니다.
초록색 칸은
고1 수의 대소 관계에 대한 성질입니다.
기출문제를 푸신 분들은
이 칸 안의 성질들이
얼마나 자주 수능에 출제되는지를
아실 것입니다.
위의 붉은 칸 안의
예제(설명)들을 이해하였다면
아래의 문제(붉은 칸)을
어렵지 않게 해결할 수 있습니다.
< 수학2 >
수학2의 함수의 극한 단원에서
분수 함수의 연속성은
수능에서 자주 다루어지는 주제입니다.
위의 초록색 칸 안의 설명(예제)와
붉은 칸 안의 설명(예제)는
각각 아래의 두 문제에 대응됩니다.
이론적으로 ...
이 주제에서 출제가능한 문제들은
이미 모두 나온 것으로 보입니다.
물론 (고1 과정과 결합된)
변형은 여전히 가능할 것입니다.
< 미적분 >
미적분에서 합성함수의 미분가능성은
많은 학생 분들이 어려워하는 동시에
수능에서 주로 (준)킬러로 등장하는 주제입니다.
아래 실전이론에서
초록색 칸은 이론 파트이고,
붉은 색 칸은
문제 풀이에 직접 연계되는 예제입니다.
위의 실전개념 설명 중에서
보라 칸 안의 예제와
붉은 칸 안의 예제는
각각 아래의 두 문항에 대응됩니다.
이처럼 ...
2025 이동훈 기출에는
반드시 알고 & 연습해야 하는
실전 개념에 대한
이론과 예제를
가능한 모두 담기 위하여
노력하였습니다.
그리고
이 책의 실전개념과 문제들 사이의
관계를 살펴보면
출제자들이
어떤 식으로 문제를 만들고 있는지에 대한
인싸이트를 얻을 수도 있을 것입니다.
(특히 이론을 계속 채워가면서 문제를 만드는, 그 흐름...)
다음주에 있는
5월 학평에서
좋은 결과가 있길 기원합니다 !
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그립읍니다
-
ㅠㅠ
-
디제이맥스를 합쉬다~ 너만오면 고
-
안녕하세요 이번에 재수를 계획하게된 학생입니다 시대인재 개강했을때 강기원선생님에...
-
뭣도 모르고 오르비 보고 좋다고 사서 풀엇던
-
작별이다 27
최강 혹시 몰라서 말하는데 나 안 가요 보내면 울거임
-
뭐 이상한 거 하나 들고 나올 예감인데
-
들어봤으면...아시죠?
-
그건 그렇다 치고 왜 본인 성적은 공개안함? 뱃지보다도 본인 성적 공개하면 어느...
-
ㅈㄱㄴ 공통은 중까지 있던데 미적은 없는지가 궁긍합니다
-
정시만 할까 6
6논술 걍 버려? 이래놓고 논술 준비할걸 이러고 후회할것 같음 아으 막막해
-
수능 영어 해설강의 찍으시는 강사분 누구있으신가요? 1
수능 영어 해설강의 듣고싶은데 조정식쌤이랑 션티쌤 이명학쌤 다 수능 영어 해설강의는...
-
긍정적인 마인드로 358일 공부하기 3일차 오늘의 소확행 : 대파타코야끼 먹었다...
-
너무문란했어서 충격받았던적있음
-
뭘 까먹은거같은데 뭐가 그렇게 불안한거지 나는 수능보기전으로 돌아가고싶다 그땐 이런...
-
혹시 구하고계신분 인스타나 링크 알면 쪽지나 댓글좀 ㅠㅠㅠ
-
질문받아요. 3
이름 까였다고 지웠는데 이번에도 이름 보인다면 그냥 넘어가주세요.
-
인하대 다니다가 반수 했는데 대학 어디까지 갈 수 있는지 궁금합니다ㅠㅠ
-
우상혁, 포부, 월붕이, 스터딘, 화반, 홍다희, 중힘, 오쎈딱, 스다밤을 안다고...
-
6논술이걸린… 1
화작 공통3틀 94 1등급 안 될까요? 여기에 제 모든 최저가 걸려있는데 메가에서는...
-
https://orbi.kr/00025202789/%EC%A0%80%EB%9E%91-...
-
만약 사귀게 되면 과외비 공짜로 해주는거야?
-
국어 시작 전에 제1감독관한테 혹시 여분용으로 하나만 더 받을 수 있냐고 말함 매 교시마다 그럴 걸
-
남겨질 재산떄문에 부모님한테 잘하는건 너무 내가 이상한가? 1
갑작스럽게 우리집안을 살펴보게 되는데 어렸을떄 엄마 아빠 이혼하고 아빠랑 할머니...
-
신기하구만
-
63/24해서 87인데 메가에선 3뜨고 다른곳은 2뜨던데 국어 3나오면 최저못맞는데 하;;;
-
유전해야지 생명은 건드린 적도 없는데..
-
부산 가고 싶다 0
광안리 <-- GOAT라고 생각함
-
ㅈㄱㄴ
-
정시이고 내신은 자퇴생이라 CC가정했을때 1. 화작/확통/쌍윤 이면 수능 난이도가...
-
이 계정만들고 본 역대급 투데이네
-
내가 봐도 쫌 귀엽게? 코디 잘한거같아서 셀카 잘 나오는 화장실 거울에 대고...
-
수능을 안봄...
-
큭큭 쿡쿡 컥컥 칵칵
-
미적,기하 둘다 노베이고 수1,수2는 쉬운4점만 겨우 맞추는정도입니다 국영탐도...
-
I’m comin’ at ya 내가 돌아왔서~ 관중들은 홍해처럼 좌 우로 갈려~~
-
공통 1~22 40분 미적 27번 20분 ㅋㅋ
-
킥킥••• 너는 잊는 것이 병이라고 생각하느냐? 킥킥 잊는 것은 병이 아니다.....
-
신두형과 함께 새로운 시작. 2025년 1월부터 다시 달립니다.
-
만화책만 봐도 재미있었던게 이제는 뭘해도 재미없는
-
일본인의 킬러문제의 정상화..
-
겨울방학 때 3
메이플 복귀 해야지
-
얘도 정시 준비한다나
-
45-46이 정배 아닌가 솔직히 46도 미쳤다고 생각하는데 부교 47보고 띠용함
-
과가너무좆같음 2
자퇴해야해#~#
-
한의사 >= 약사 > 한약사인가요? 경희한약 입결이 어느정도인지 모르겠네요...
-
생윤 사문이 고트죠?
-
라떼는 잘 기억은 안나지만 홍다희 이 분도 유명했고 매일 현주해가 열광이었고...
-
광운대 낮공 가능할까요...?
-
후하하
첫번째 댓글의 주인공이 되어보세요.