[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://ui.orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잇올커리 1
잇올가면 커리 다 짜주시나요? 메가 대성 패스 있으면 그걸로 짜는거죠?
-
아침은 커피랑 먹어야지...ㅋㄱㅋ
-
오늘할거 2
11더프 풀고 채점하고 맛보고 즐기기
-
기출+ebs 정리하기로 결정 지신감만 떨어져서 보기 싫음 ㅋㅋ
-
아까 집나갈 때 아빠가 ‘오잉 왜 아직 안나갔지....?’ 하는 눈으로 쳐다보심...
-
나쁘지않을거같은데
-
기상 3
ㅎㅇ
-
1컷 96의 악몽은 진짜...
-
고등학교 다닐때 사귀던 사람은 사귀기 쉽겠지만...ㅋㅋㅋㅋㅋㅋ
-
불수능이면 자신의 지능의 한계를 깨닫고 입시판 탈출가능함 물수능이면 쓸데없는 희망만...
-
고대 성적 8
이정도면 고대 낮은 과 갈 수 있나요? 물론 이거 이투스 모고이긴 한데.. 영어 2...
-
대성 인강 복귀는 하실까요…? 아직 신규강사 3명 남았던데 그중 하나일지 의견좀요
-
평균적으로 작수보다 어려운가요??
-
오르비 짜요
-
이런 얼어 죽을 0
(진짜임)
-
박광일 풀커리 vs 김상훈+손창빈 어떤게 나을까요? 대인라 들어보신분이나...
-
눈사람 자살 사건이 최승호 작가님 책이더라구요..? 2
아쉽게도 북어는 없었음ㅠㅠ 대설주의보라고 다른 책에 수록되어있다고 하네요
-
실모많아서조와요
-
ㅈㄱㄴ
-
노래추천해줍쇼 9
실모풀기 전 활기차게 시작할 노래를
-
전 7시 45분에 일어낫습니다 근데 아현이 너무 이뻐서 베이비몬스터 뮤비보느라 준비...
-
원인이 이건가 싶어서…
-
제발,,
-
9일뒤 체험해봐라 …. 22수능 맛…
-
스카에있는 티비에서 수능 응원 문구 나옴
-
f'(x)가 서로 다른 두 개의 중근을 갖는 경우는 안 되는 건가요? 해설지에 저...
-
츄워 1
-
다들 몇 점이고 어떠신가요? 예상 1컷이랑요
-
그야 내년이니까 ㅅ@발아
-
남은 기간에 ebs 지엽파트 한번 공부해볼까하는데 혹시 어떻게 지엽파트...
-
되고싶어!!!! 그러니까 최저만 맞추게 해줘!!!
-
구라같은데 ☆
-
헤헤
-
고2인데눈물나올것같음 난 수12처럼 걍 겨울방학에해도 되는줄알았띠...ㅠ
-
전 이런 찬공기냄새가 너무 좋아요
-
수액~ 4
ㅋㅋ
-
수액 맞는거 3
언제쯤 맞아야될까요? 맞으려고 하는데 언제 맞아야 적정한지 모르겠어요 ㅜㅜ
-
비둘기가 겁이 없네 13
내 발 바로 옆에 있음
-
9일 남았군. 8
홧팅
-
국어 실모 시간 3
꼭 8시40-10시에만 푸시나요 아니면 오후에도 시간 80분 재거 푸시나요??
-
최저7도 최고16도 엄청 춥진않아서다행인듯
-
ㅠㅠ 또 나만 어렵지..
-
엉덩이 아픈데..
-
일어날때 고양이가 얼굴 부비대면서 똥꼬내밀고 아침인사해줌
-
머이리추움 4
개같은거
-
수능 화장실 2
수능 볼 때 화장실에 사람 많았나요?
-
내 생일이야… 옯붕이들아 축하해줘…
-
이렇게 생겨서 한번에 마킹되게 하는거거든요. 이거 쓸수 있나요?
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545