수학 기출문제집을 선택하는 원칙
게시글 주소: https://ui.orbi.kr/00066609420
언제나 올바른 교육을 추구합니다.
어떤 시험이든 그 시험을 출제하는 기관에서 과거에 출제한 문제들은 공부에 가장 큰 도움을 줍니다. 따라서 우리는 평가원에서 출제한 문제들을 반드시 공부해야만 합니다. 그래서 오늘은 그런 문제를 모아둔 기출문제집을 선택하는 원칙에 대해 이야기 해보려고합니다.
1. '최근 몇 개년', '수능 트렌드 반영' 을 선정 기준으로 수록한 문제집은 피하라.
- '모든 기출 문제를 다 공부 해야 하나요?', 네. 그 정도는 1등급을 위해서는 절대 많은 양이 아닙니다.
- '트렌드가 있지 않나요? 너무 옛날 문제는 느낌이 다르던데...?'
이 문제가 담고 있는 내용은 다음과 같습니다.
이 문제가 담고 있는 행동영역은 추론입니다. ('추론' 문항을 어떻게 훈련해야하는가?는 이후 글에서 이야기 하겠습니다.)
이번 수능 문항입니다. 이 문제가 담고있는 뜻이 95년 문항과 같습니다. 물론 내용과 행동영역 모두에서. (이 문제를 역추적이라는 정상적이지 않은 방법으로 풀고 문제를 공부하지 않는 사람은 없겠죠...? 우리는 이 문제를 풀려고 공부하는 것이 아닌데...?)
이 문제 또한 이번 수능 20번 문제입니다.
이 문제에 대한 풀이는 https://orbi.kr/00066554434 (10탄)을 참고하시면 됩니다.
2002년 수능에 나온 문제의 내용이 그대로 선분 OB길이을 구할 때 쓰입니다.
역사는 항상 반복됩니다. 따라서 교육과정에 있는 모든 문제를 공부할 수 있는 문제집을 선택해야합니다.
2. 대단원 또는 중단원 이상으로 문제가 분류 되어 있는 기출 문제집은 피하라.
- 말 그대로 정말 작은 단위로 분류 되어있는 문제들은 대부분 내용으로 분류되어 있습니다. 그것은 문제에 쓰인 내용을 소재로 '유형화' 한 것인데... 수학적 사고력을 평가하는 수능 시험에서 내용을 세부적으로 나눈 경우에는 그 문제에 필요한 내용 도구를 늘려버리기 쉽습니다. 예를 들면... 역추적이나 비율관계나 여사건을 사용하는 문제들만 모아놓은 경우, 사고를 내용의 틀에 가두고 공부를 하게 됩니다.
- 내용을 기준으로 분류가 필요하다면 그것은 계산이나 이해를 묻는 2점, 3점 문항에 적용하는 것만 공부에 도움이 될 수 있을겁니다.
- 아래 문제는 내용영역에서 분류한다면 어떤 단원에 분류되어이야 할까요?
이 문제는 수능 10번이고, 풀이는 제가 쓴 글 https://orbi.kr/00066345624 [6탄]을 참고하시면 됩니다.
위에 링크한 글에서 보면 알겠지만, 인강 강사나 EBS나 이 문제를 풀이하는 과정을 보면 기본적인 개념의 적용도 잘 하지 못하고 풀이하는 것이 대부분입니다.
이 계산을 하라는데 적분하고 다시 미분하고... 있습니다. 여기서 더 황당한 일은 '미분하지 않아도' 비율관계를 쓰면 된다고, 역시 '비율관계'라는 실전개념(객관적으로 '잡'개념일 뿐인)을 알면 유리하다고 합니다. 이 문제의 경우에 문제해결에 전혀 중요하지도 않은 '동시에 원점을 출발했다'는 것을 강조합니다. 문제해결에 거리가 절댓값으로 나타난다는 것은 '중요한데' 이 문제에서는 별 상관이 없었다는 '헛소리'도 합니다.
따라서
(1) '내용소재'를 분류기준으로 하면, 수능이 평가하려는 사고력의 훈련을 제대로 할 수 없을 뿐 아니라
(2) 그 분류의 기준도 '출제의도'와 거리가 먼 '풀이'를 기준으로 하는 경우가 많습니다.
(3) 그래서 앞으로 나올 문제에서는 득보다는 실이 많을 수밖에 없는 '실전개념'이 유용한 것 같은 착각을 불러오기 때문입니다.
3. 제공되는 풀이가 일관된 원칙과 방향이 없는 기출문제집의 선택은 피하라.
기출문제집에서 '풀이'는 사실은 크게 중요하지 않습니다. 평가원 홈페이지에서 제공하는 기출문제가 연도별로 제공될 뿐이어서, 교육과정의 변화를 알 수 없는 수험생이 활용하기에 부족한 점이 많기 때문에 '정리된 기출문제'가 필요할 뿐입니다.
그런데 사실 출판, 유통되는 기출문제집이 교육과정의 변화를 제대로 반영하고 있는가 하면 그렇지는 않긴 합니다. 예를 들어 다음의 문제는 현재의 교육과정에서는 제외되어야 할 기출문제입니다. 그런데 확인해본 기출문제집에는 한결같이 이 문제를 제공하고 있습니다.
이 문제의 '모든 요소'는 전혀 배우고 익힐 필요가 없는가? 당연히 아닙니다. (이유는 이 문제가 출제된 당시에 무리함수가 수능 시험범위에 있었고, 따라서 성취기준에 그것이 반영되어 있습니다. 그런데 지금은 그렇지 않기 때문에 필연적으로 생각하지 못하고 풀이를 진행하게 됩니다.) 그래도 이런 문제를 어떤 이유에서 수록할 수는 있을 것이며, 이런 경우에는 <풀이>가 중요한 부분이 있을 것입니다.
일반적으로 기출문제집을 선택할 때, '풀이'는 선택의 중요한 요소가 되긴 할 것입니다. 그런데 곰곰 생각해볼 것이 있습니다.
'풀이'의 역할은?
맞힌 문제를 소재로 '반성'하는 것을 가능하게 하는 풀이는 적어도 제가 아는 수준에서는 기출문제집이 그런 관점에서 만들어진 것이 없기 때문에 당연히 찾기 어려울 것입니다. 그리고 이것은 소위 상업적 면에서는 이해는 됩니다. 기출문제집을 판매하는 것은 시장의 요구를 외면할 수는 없기 때문입니다. 그런 점은 이해한다고 해도 '틀린 문제'에서 하는 역할 중심으로 고려해도 몇 가지 생각해볼 것은 있습니다.
틀린 문제의 '풀이'를 보는 것은 3점 문항이거나, 풀이의 한 예시를 본다는 의미를 넘어서면 의미가 없습니다.
3점 문항의 '풀이'는 대부분의 기출문제집이 큰 차이가 있을 것 같지는 않긴 합니다. 물론 3점 문항에서조차 '출제의도'를 모르는 풀이들이 꽤 있긴 하지만... (이번 수능 5번 문제만 봐도.... https://orbi.kr/00066220722 )
틀린 문항의 풀이는 그것이 예시의 성격을 갖고 있어야 하고, 그렇게 하려면 반드시 "출제의도"에 따른 풀이를 제공할 수 있어야 합니다. 난이도가 높은 문제에 대해서 이런 풀이를 찾아보기 어려운 것이 현실입니다. 특히 '해결과정의 설계의 필연성'의 관점에서, 수능이 수학적 사고력을 평가한다는 관점에서는 더욱 그렇습니다.
따라서... 적어도 '친절하다'는 평을 받는 여러 추론의 결과를 '실전개념'이라고 포장한 해설이 있는 기출 문제집은 피해야 합니다.
특히 2024학년도 수능은 명백하게 그런 '실전개념'이 유리하지 않게 출제했다는 것은 상식이 있는 사람이라면 뻔히 알 수 있는 상황임에도, 아마도 여전히 '실전개념' (가령 미적분 30번에서의 변곡접선이 중요했다는?) 운운 할 가능성이 클 것입니다. 그런 '풀이'는 그 문제의 답을 맞힐 수 있는 하나의 방법에 불과한 것인데, 문제는 그 상황은 이미 '과거'라는 것입니다.
'다양한 풀이'가 제공되면, 수험생이 여러 풀이를 '수집하는' 번거로움을 덜어주는 효과는 있을 것입니다. 실제로 기출문제집의 풀이를 보면 단지 '여기 저기서 수집 가능한 풀이를 모아'놓은 것에 불과하다고 해도 크게 틀릴 것이 없는 경우도 꽤 있습니다. 다양한 풀이를 제공한다고 떠드는 기출문제집일수록 이런 경향이 큰 것 같았습니다.
이런 경우에는 사실 '편집자' (이런 저런 풀이를 수집해서 제공하는 성격이라 저자보다는 편집자라고 해야 할 것입니다)의 '수학적 능력'이 중요합니다. 그런데 '편집자'의 수학적 능력이 부족하면 이런 경우는 그야말로 '잡탕'이 되어버리고 말 것입니다. 어디서 '좋아 보이는 풀이'가 있으면 수집해서 (스스로 찾아낸 풀이처럼 쓰는 것은 '장사'를 위해서는 그럴 수는 있다고 봅니다. 수학 문제의 풀이에 무슨 저작권이 있는 것도 아니니까.) 마구 수록합니다.
예를 들어, 수능 15번의 풀이를 역추적으로 푸는 풀이와 처음부터 나열하여 추론하여 푸는 풀이도 싣는..? 이런 경우라면, '잡탕 풀이'의 전형이라고 해도 과언이 아닐 것입니다.
2024 수능 이후에 "'견적 과정"' 중요성을 인지하는 경우가 조금은 생기는 듯 합니다. '구체적인 예를 이용하여 문제해결의 단서를 찾아야 한다'는 식의 이야기를 조금씩 볼 수 있어서 참 "이제라도..." 이런 생각은 듭니다. 이제라도 그런 방향으로 가르치고 배워갈 수 있다면 다행스러운 일이라고 생각은 합니다. 그런 것을 "과거에는 안 그랬는데 지금은 그렇다" 즉 마치 경향이 바뀐 듯 이야기하는 것도 뭐 '과거의 잘못을 인정하기 싫은 마음'으로 이해해줄 수도 있을 것입니다.
1994년 수능을 시작할 때, 이미 '발견적 과정이 사실상 없는' 수학교육의 문제를 해결하는 것이 '수능의 기본취지'의 하나였음을 새삼 꺼내서 그런 사람들 비판하고 싶은 생각도 없습니다. (그리고 이런 부분은 강사연수원에서 이야기할 부분이지, 수험생에게 이야기할 내용도 아니고....)
문제는 '발견적 과정'의 중요성과 '실전개념'은 양립할 수 없는 것이라는 점입니다.
그러면, 잡탕 풀이라고 해도 가능하면 여러 관점, 여러 방법의 풀이가 제공되면 좋은 것 아닌가? 당연히 아닙니다. 만약 그렇게 여러 관점의 풀이가 같이 제공되려면, 무엇인가를 기준으로 논평이 정확하게 제공되어야 합니다. 당연히 그 기준은 평가원이어야 하고. 그런데 '편집자'가 그런 기준에 대한 원칙을 갖고 있지 않습니다. 만약에 어떤 기출문제집의 '편집자'가 그런 원칙과 방법을 갖고 있다면, 아마도 우리가 자연스럽게 알게 되었을 것입니다.
'편집자'의 편집 기준이 없으면? 그런 기출문제집으로 공부와 훈련을 한다면 학생의 머리도 잡탕으로 변해갈 확률만 높아질 뿐입니다. 그렇게 되면? 네. 정확히 수능은 2등급 정도에 도달한 학생들의 '주사위 던지기' 게임이 되어버릴 뿐입니다. 일정한 비율로 1이 나온 학생들의 결과로 나머지 대부분의 학생이 1이 나오지 않았다는 사실을 숨기면서.
P.S.
직접 운영하는 수능교육연구소와 교육센터 그리고 강사연수원이 만들어졌지만, 여기서 권고하는 '기출문제집'을 바로 당장 만들기는 어렵습니다. 강사연수원에서 세미나에 참여하는 분들이 자주 모이고, 좀 더 많은 분들이 참여해서 수험생에게 도움을 주는 기출문제선집(여건상 모든 기출문제를 다루기는 힘들...)을 만들 수도 있을 것이고, 그러면 혹시 추천할만한 기출문제집이 이번 겨울방학기간에 시장에 등장할 수도 있긴 할 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
매해 수능마다 밈 제조하고 싶으신 듯 킥킥 ← 24보다 효용성이 개지림
-
3 5 6 7 9 10 수능 물1 47 47 50 50 50 50 47 지1 47...
-
청설 4
진짜 역대급 Joat..
-
부정적분 말고 긍정적분 하라고~
-
걍 확통할까 10
근데 확통 공부하기 너무 싫은데
-
쌍사 질문 5
내년에 사탐런 쌍사 하려는데 어느정도까지 공부해야 되나요? 인강 안 보고 수특 수완...
-
주변에 안가야지...
-
순서 삽입엔 강한편이고 빈칸엔 약한편임.... 항상 88~94사이 진동임.....
-
어떻게 붕어를 총으로 빵 쏴서 죽일 수가 있음 퓨ㅜㅜㅜㅜㅜ
-
슈냥님 모욕하는 걸로 간주하겠다
-
풀빵 0
바다앞에서
-
계란빵 먹고싶다 7
요즘 파는곳이 적어서 슬퍼
-
누가 붕어빵 가격 정상화 좀
-
캬캬캬 이거거덩
-
찹쌀떡 1
ㅅㅂ 왜 팥이 아니라 딴 게 들어가 있냐
-
신창섭 성이 김씨였음 ㄷㄷ
-
올해 징크스 유지된거? 김동욱 84 미적 경한 정법
-
당신은 최악이라 느끼겠지만, 당신의 미래는 최악이지도, 아직 정해지지 않았다....
-
제발
-
ㄹㅇ 용량 개작아서 앱 하나도 못깔고 사진도 못 찍고 심지어 카톡 업데이트도 못하는...
-
김승리 3
시대 안하는거 아쉬움 개인적으로…
-
이과의 자부심 챙기기+대학교 가서 남들보다 우위에 서기 가능 주변 현역들이 보는...
-
생윤 작작해라 0
적당히 하고 다시 3컷 얌전히 31로 되돌려놔라 진짜 진심이다
-
국어나 수학 칼럼 올리면 읽으실 분 있나요?
-
찬우야잇! 1
어서 시대인재로 가자이
-
1년동안같이노력했던고닉들이 오직수능이끝났기에볼수없다는게 너무슬픔...
-
난 무조건 표점만 본다. 표본이고 지랄이고 모르겠고 표점만 보고 숫자에는 조금...
-
23수능 물생 21이고 군수할려합니다
-
현재 일병 4호봉이고 지금은 국어 수학만 하다가 내년 1월부턴 본격적으로...
-
근데 예체능은 0
실기 합격 확률이 얼마나 됨? 예를 들어 한체대나 건대 정도 체육 아니면 미대도
-
메가 합격예측 4
대충 맞나요??
-
앞=남 뒤=북 0
앞뒤라는 방향에서 방위까지 의미가 확장되었다고 볼 수 있는 예시
-
그럼 뭔가 좀 억울한뎅 내가 또 합성함수 깨우치느라 작년에 쌩고생 했었는데
-
입실 시간보다 늦게 와서 문 두드리는 학생하고 학부모님 보니까 좀 그렇더라
-
‘이병헌 협박女’ 24억원 벌더니…남자친구와 유튜브 활동 1
작년 24억 벌고 올해 초 은퇴 선언하더니 20년 지기 이성친구와 유튜버로 활동...
-
여기서 님들이 지지고 볶고 싸워봤자 아무런의미가 없음
-
수학인강추천 6
원래 수학 못하는데 수능날 역대급 오싹오싹 호러쇼 찍어버렸어요 반수 계획중이고...
-
삼수는 안하는게 맞음
-
고3이여서 수능 공부해야된다고 엄마가 헤어지래 로 올해 1월에 차였는데 잘봤으려나 그 친구
-
신분증검사는 2
짜릿하구나 즐겁다 촤하하하핫
-
말이안되는데? 롤링걸 10초컷당함
-
닉변신고 10
오직강해린에서 닉변
-
인생첫 56 돌파한지 얼마 안 됐는데 첫 57도착
-
나혼자 찍맞한줄 알고 좋아했었는데 오르비에 올라온 글들 지금 읽어보고 실망중ㅋㅋ...
-
[피오르] 최근 5개년 메디컬/문이과 추정 입결표 19
일단 고생한 저에게 좋아요 좀 부탁드립니다. 안녕하세요 피오르에듀 유인우라고...
-
물은 참 신기한거같음 16
0도에서 얼고 100도에서 끓네 ㄹㅇ 신기하다
-
08/정시러입니다 고1 국어 모고는 1후정도 나오고 고2 모고는 2등급 중반정도...
-
머가 더 유리한가요 미적만점받을 자신은 즉어도 없는데 기하가 그나마 낫다는 카더라가 잇어서..
-
커리올라온거 봤는데 등급대별 교재도 추천해주시고 무엇보다도 고1 5등급부터...
-
서울대 교과평가 BB 나올거같은데 일반 전형이랑 지균중에 뭐가 더 유리하나요?
마더텅 갖다 버려야하나..
마더텅은 전개년 선별문항 수록되어있지 않나요? 물론 평가원것만 있지는 않지만...^^;
굿
이거보고 한완기 갖다 버리기로 했다.
역추적이 뒤항에서 앞항으로 쭉 가는거라는
의미로 쓰신거면 의문이 듭니다. 역추적이 왜 정상적이지 않은 방법인가요...?
쉽게 이야기하자면 a5, a6, a7 이 아니라 a15, a16, a17이어도 역추적으로 풀이할 것인가요?
학생이 시험장에서 역추적으로 풀었다. 라고 하면 잘했다! 라고 할 수 있을겁니다. 그러나 공부하는 학생 입장에서 그렇게 푼다면, 다른 문제를 풀때는 어떻게 적용 할 수 있을까요?
수열의 교과서 내용을 보면 수를 순서대로 나열한다고 쓰여있습니다. 수열의 개념은 기수가 아니라 서수를 바탕으로 하기 때문에 항(첫번째)이 결정된 다음항(두번째)이 어떻게 되는가를 공부하는 것입니다. 그리고 그 규칙이 어떻게 될지 추론을 하는 것이지요.
역으로도 추론이 되지 않는가? 라고 한다면, 즉, 두번째항이 있고 그 앞에 항을 구하려고 한다면 여러가지가 올 가능성이 있기 때문에 당연히 더 어려울 수 밖에 없는 것이고요.
'시험장에서 역추적으로 답을 냈다'는 것은 틀리지 않았지만 적어도 수열에서 '역추적을 공부해야겠다!'는 것은 틀린 것입니다.
https://cafe.naver.com/sunoleum/858?tc=shared_link
먼저 올해 수능 15번 문항에서, 저는 저 점화식 조건 자체를 뒤집어서, 괄호 안의 조건 자체를 an+1에 대한 조건으로 바꾼 뒤 뒤로 가는 점화식을 작성한 후, 빠르게 뒤로 가서 답을 냈습니다.(댓글인지라 첨자가 어려워서 뭉뚱그려 쓴 점 사과드립니다. 설명이 필요하시면 더 자세하게 적어서 드리겠습니다)
역추적 자체가 정추적이 빡빡할 때 하는 것 아닌가요?
"역으로도 추론이 되지 않는가? 라고 한다면, 즉, 두번째항이 있고 그 앞에 항을 구하려고 한다면 여러가지가 올 가능성이 있기 때문에 당연히 더 어려울 수 밖에 없는 것이고요."
이 말씀이 잘 이해가 안 됩니다. 왜 당연히 더 어렵죠?
역추적이든 정추적이든 논리적으로 문제만 없으면 "어떤 풀이가 문제가 있는 풀이다" 식의 비판은 함부로 하면 안 된다고 생각합니다. 역추적이 유리한 순간이 분명히, 그것도 평가원 기출에 상당히 자주 등장했던 걸로 기억하고, 위의 "점화식 거꾸로 쓰고 뒤로" 가 분명 유의미한 효율성을 제공하는 풀이임은 부정할 수 없습니다.
물론 올해 수능 15번이 워낙 쉬워서 이 방법을 쓰면 거의 뇌를 빼고 풀 수 있게 우연히 나온 것은 맞고, 이 방법이 모든 수열 문제를 쉽게 푸는 방법도 아닙니다만, 그러면 또 그때 올바른 대처를 하는 것이죠. 저는 이 방법이 '추론'의 범주에서 벗어났다고 생각하지 않습니다.
근의 공식을 이차방정식에서만 사용할 수 있으니 근의 공식으로 문제를 풀면 삼차방정식으로 확장이 안 되게 풀이했으므로 잘못한 것인가요?
우선... 대부분의 답변은 글과 댓글에 이미 써있습니다.
정추적이 빡빡?하다고 느끼셨나본데... 정확하게 정추적으로 풀어보셨다면 그렇게 생각하지 않았을 것 같습니다. 우선 역으로 푸셨을때 그것이 a1의 전체집합인지 확신할 수 있었는지도 의문입니다. 그리고 끝까지 나열하셨는지 그전에 '탈출'하셨는지도 의문입니다.
음... 왜 당연히 어려운지는... 역추적이 효율적이라는 것이 '착각'이라는 것을 아셔야할텐데... 그러려면 정상적으로 문제를 푸는 연습을 충분히 하셔야 알 수 있을것입니다.
글에서도 이야기 한 것처럼 그렇게 푼 풀이가 다른 문제를 풀때, '나 이런것도 나열해봤는데' 정도의 경험을 주는 것 외에는 의미가 없을 겁니다.
문제를 풀때 '매번 주사위를 던지는겠다'는 느낌입니다. 같은 말을 반복하자면... a_17이어도 역으로 다 나열하려고 할까요?
카페 글은 무슨 의도신지 모르겠네요 교육센터 가입하라는 건가요..
질문 하나 하자면.. 기출에서는 무엇을 얻어야 할까요?? 아무생각없이 기출 풀고 있는데 이러면 의미가 없을거 같아서..
제가 기출문제 풀이하며 분석하는 방법을 글로 쓰고있습니다. 예시를 최대한 많이 들어서 설명드리고 있으니 글을 정주행 해보시면 좋을것 같네요. ^^
넵 쭉 읽어보겠습니다^^
그럼 어떤게 그나마 괜찮은건가요?
https://orbi.kr/00066800858
어느 정도 답이 될 수 있을 것입니다.