[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
게시글 주소: https://ui.orbi.kr/00065891419
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기하보다 확통이좋지않음?? 의치라인은 미적이 더좊은거같고
-
고3 수학특강 수강대상에 난이도 중상이라 적혀있어서 고2 모의고사 기준 어느정도...
-
ㅇㅈ) 10
오늘 저녁 와퍼 + 트러플 감튀 둘 다 너무 맛있어서 극락
-
뇨떡밥임뇨 4
주식보고왔음뇨
-
문득 사관학교 간 친구들이 대단해보임... 거기도 아무나 가는 건 아닌 듯 ㄹㅇ
-
성대나 고대 5
성대고대는 불가능하겠죠? 지구를 완전히 망쳐서.. 수학은 96이고 생명은 47일수도 있습니다
-
재밌어요 화성수원용인평택천안아산구미이천청주파주
-
쌤 앞에서 무릎 꿇고 간절하게 정시공부하게 해달라고 하면 해주나… 못하게하면 아무리...
-
뇨말투가왜뇨 6
귀엽잖
-
수능 미스터리 4
고인물들이 분명 성불하는데 어째서 계속 고여있는 걸까나
-
3모 수학 1이면 수능때도 1ㄱㄴ? 3모 수학 수능이였으면 1컷 88이라는데 이건...
-
애니 최강캐 4
"레드" 수식어 : 정점 한지우 아님 주의
-
실수로 킹희생을 해버렸어요
-
걍 생1지1 하던거나 열심히할까싶음뇨
-
가천대 3
오늘 가천대 논술 오후 타임 무슨 형임 E형은 아닌거 같은데 F임? 나만 시간 줠라...
-
다들 맛저하세요 7
저는오징어랑 해물탕먹었어요~ 맥주는덤으로
-
ㅈㄱㄴ (끄읕)
-
훈수 ㄱㄱ 0
https://orbi.kr/00070157908
-
나는 아직 2년전에 멈춰있음뇨
-
저는 오메가인갸요
-
ㅈㄱㄴ
-
설약 지망 08 2
갓반고 4.2에 고3 국수 모고는 1-2 왔다갔다 해서 정시로 돌린지 3개월 정도...
-
안녕하세여 예비 고3입니다.. 시대인재 수학 라이브 들으면서 과탐 엣지 플로우...
-
코딩 꿀팁 3
메모장에 코딩하면 쌉고수처럼 보일 수 있음
-
07인데 뭐 현역아닌가 빡모 88인데 3모때 1 될까요?이런거 올릴꺼임뇨
-
한약수 가능?
-
까만 건 글씨고 하얀 건 종이야
-
버튜버 콘서트 릴스마다 다 코드 뽑아버리면 어케됨 이러네 2
아 존나웃기네ㅜㅋㅋㅋㅋㅋ
-
현역들 수능 준비할 때 학교쌤이 얼마나 간섭했음? 18
학교쌤이 얼마나 간섭하는지 대충이라도 아는게 나을 것 같아서 물어봄 혹시 수행같은건...
-
어떰? 얼굴이 승무원상으로 예쁜데 목소리 중저음임
-
恋するおとめの作り方 사랑하는 여자아이를 만드는법 강력 추천드립니다 시간나시면 한번 보시길
-
음하하하 돈까스파스타바게트
-
쌍지런데 모고 2등급정도 이기상 이모다도 45이상 많음 근데 세지4등급...
-
친친은 하루에 15개씩 조지는데 본계는 1년에 3개씩 올림 멀어진 사람이 너무 많다보니 어색함뇨
-
애니 미쳤습니다 예전에 징송의 프리렌인 줄 알았다는... 다음 언제 나올련지
-
인싸들이 내가 오르비에 글 쓰는 이유 이해 못하는데 5
인싸들 스토리, DM = 오르비 글, 댓글 ….인스타는 올려봤자 뭐 몇명 보지도...
-
노상방뇨 4
상방이없단거임뇨 노상방뇨
-
평균 컷 몇 예상?
-
뇨뇨거리니까 9
배뇨마려움 그만좀 글좀 싸라 ㄹㅇ
-
올해초였나 그 때도 몇 명 썼었는데 돌고도는유행이노
-
중2때 겁나 했던 트위터에서 알게 된 트친이 고등학교때 알고 보니 한 살 후배였던...
-
블루록 저번주걸 안봤네 13
캬캬캬
-
안녕하세요? 국어 강사로 활동하고 있는 Mantra입니다. 19 20 21 수능...
-
뇨 말투 누가 시작했냐 10
아오
-
수능 끝나고 즐겼으니 갓생달릴차례인데 아이디어가 고갈남 저탄수로 먹을건데...
-
서성한 가고싶습니다 ㅠㅠ (확통은 실채점 나오면 백분위 약간 떨어질것 같긴합니다..)
-
뇨 말투 이거 3
진짜 ㄹㅇ 개쌉 중독성 있음뇨
-
스카 화장실 오는데 뒤에서 저 부르더니 저기..혹시 임용 2차 준비하시나요?...
-
이건 진짜임뇨... ..
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!