[서울대 수교과] 함수의 연속, 정의역이 핵심이다.
게시글 주소: https://ui.orbi.kr/00065494895
안녕하세요! 저는 서울대 수학교육과 다니는 신동성 이라고 합니다.
간단이력
-휘문고 고1때 전교 435명중 415등, 뒤는 다 운동부로 전교꼴찌
-3수 서울대 생물교육과, F학점 6개
-4수 서울대 수학교육과
나름 우여곡절이 있었죠?ㅎㅎ
여하튼, 오늘은 함수의 연속에 대한 간단한 칼럼을 써보고자 합니다!!
1. 연속의 정의
2. 연속의 판단
3. 함수의 연속, 정의역이 핵심이다.
이렇게 구성해봤는데요, 함수의 연속의 기본적인 내용을 숙지하고 계시다면 1,2는 스킵하고 3번만 보셔도 괜찮습니다.
1. 연속의 정의
혹시나 저처럼 공부를 늦게 시작하신 분들을 위해! 연속의 정의부터 간단하게 살펴보겠습니다.
f(x)는 끊어져있고, g(x)는 이어져있죠?
여러분의 직관과 정확히 일치합니다. f(x)는 연속, g(x)는 불연속인 것이죠.
예시를 하나 더 살펴볼까요?
위의 세 함수는 모두 다 불연속입니다.
직관적으로, 끊어져 있으니까요.
그렇다면, 끊어져있는지, 이어져있는지를 수학적으로는 어떻게 판단할까요?
[정의]
연속의 정의는 위와 같습니다.
함수 f(x)가 x=a에서
1. 함수값이 있고
2. 극한값이 있고
3. 둘이 같을 때
f(x)는 x=a에서 연속이라고 하죠.
이를테면,
이렇게
1. 극한값이 존재하고
2. 함수값이 존재하고
3. 둘이 같은
연속함수가 있을 수 있죠.
불연속의 예시로는
case 1. x=a에서 함수값이 없어서 불연속
case 2. x=a에서 좌극한 =/= 우극한 이므로, 극한값이 없어서 불연속
case 2. x=a에서 좌극한과 우극한이 무한대로 발산하므로, 극한값이 없어서 불연속
***무한대는 극한값이 아닙니다! "값"이라고 하려면, 특정한 실수로 수렴해야 해요.***
case 3. 극한값도 함수값도 있지만, 둘이 달라서 불연속
이런 불연속 케이스들이 있습니다. 간단하죠?
2. 연속의 판단
앞서 살펴본 예시에서, 직관적으로 f(x)는 끊어져 있다고 이야기했습니다.
f(x)의 연속성을 수학적으로 판단하는 방법은 아주 간단하죠?
[연속의 정의]에서 보았던 세 조건을 차례대로 체크하면 됩니다.
1. 함수값 존재
2. 극한값 존재
따라서 좌극한 =/= 우극한 이므로, 극한값이 존재하지 않네요. 그러니 f(x)는 불연속이겠어요.
3. 함수의 연속, 정의역이 핵심이다
여기까지는 아주 쉬웠을 겁니다.
오늘 제가 강조하고 싶은 건, 연속성 판단은 정의역을 꼭 고려해야 한다는 거에요.
이를테면 f(x)를 봤을 때, 우리는 끊어져 있으니 불연속함수라고 이야기하지만, 사실 그건 x=2에서의 이야기죠.
2를 제외한 나머지 모든 x에서는 f(x)도 연속입니다.
그러니, 이를테면 x=3에서도 연속, x=-1에서도 연속, 정의역을 x<2로 제한했을 때에도 연속인 것이죠.
특별한 일이 없다면 모든 실수 x에 대해 연속인 함수만 "연속함수" 라고 칭하지만, 그래도 언제나 정의역을 잘 고려해야 해요.
이를테면 이런 문제를 만났을 때, 위의 풀이와 같이 우리는 x=3에서의 연속성만 체크할 거에요.
그런데, 문제에서는 f(x)가 실수 전체의 집합에서 연속이 되도록 하는 a를 요구했죠?
그렇다면 여기서 이상함을 느껴야 해요.
실수 전체의 집합에 대해 물어봤는데, 왜 x = 3에서의 연속성만 체크해도 되는걸까?
정답은 아주 간단합니다. 3이 아닌 모든 실수 x에 대해, f(x)는
1. (다항함수)/(다항함수), 즉 (연속함수)/연속함수)이고
2. (분모)=/=0이므로
무조건 연속이죠. 따라서 3이 아닌 모든 실수 x에 대해서는 별도로 고려할 필요가 없었던 거에요.
너무 쉽고 당연한 얘기죠? 그러나, 이런 쉽고 당연한 생각들이 어려운 문제에도 그대로 활용됩니다.
2022학년도 3월 모의고사 12번 문제입니다.
ebs 기준 정답률 43.3%로, 마냥 쉬운 문제는 아니었죠.
꼭 한 번 직접 풀어보신 후 아래를 읽으시길 추천드립니다! 귀찮음말구ㅋㅋ!
어려운 문제를 풀다가, 내가 어디까지 했는지, 이제부터 뭘 해야 하는지 어리바리 해본 적이 분명히 있을 거에요.
제가 위에서 이야기했던 정의역 체크가 그 해답이 되어줍니다.
이렇게, 봐야 할 곳과 안 봐도 되는 곳을 구분해주는 게 아주 훌륭한 길잡이가 되죠.
그 다음에는 계산만 하면 됩니다.
x=2, x=1, x=a에서 연속성 체크,
그를 통해 f(x)와 g(x)를 완성하고,
그를 통해 h(x)를 구하면
h(1)도, h(3)도 구할 수 있겠죠?
마지막 계산은 생략했습니다. 중요한 건 정답 숫자가 아니라, 생각하는 방법이기 때문이에요.
어려운 문제에서 우리를 힘들 게 하는 건 방향성 잡기 입니다.
내가 뭘 하고 있었지? 앞으로 뭘 해야 하지? 가 아주 사람을 미치게 하죠.
그걸 극복하는 방법은, 굉장히 머리가 좋아야 한다거나, 번뜩이는 아이디어를 캐치해야 한다거나 그런 게 아닙니다.
필요충분적 조건해석이 그 극복법이죠.
그리고 시험장에서 조건을 필요충분적으로 해석하려면 평소에도 조건을 필요충분적으로 해석해야 합니다.
또, 어려운 문제에서 조건을 필요충분적으로 해석하려면 아주 쉬운 문제에서도 조건을 필요충분적으로 해석해야 하고요.
사실, 오늘 칼럼을 준비한 이유가 바로 이거에요.
아주 쉬운 연속 문제에서 쓰였던 아이디어가 어려운 연속 문제에도 똑같이 쓰인다는 것,
어려운 문제를 풀기 위해 대단히 특별한 무언가가 필요하지 않다는 것을 전달드리고 싶었습니다.
그리고 오르비학원에서 강의 진행합니다!
도형 관련 무료특강
수학II 미분 관련 무료특강
수학II4주짜리 개념+기출 특강
https://academy.orbi.kr/gangnam/teacher/464
많이 관심가져주시면 감사드리겠습니다 헤헤,,
이상입니다! 다음에도 또 재밌는 주제 들고 놀러오겠습니다.
도움이 되었다면 추천팔로우댓글 많관부!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
걍 생1지1 하던거나 열심히할까싶음뇨
-
가천대 3
오늘 가천대 논술 오후 타임 무슨 형임 E형은 아닌거 같은데 F임? 나만 시간 줠라...
-
다들 맛저하세요 7
저는오징어랑 해물탕먹었어요~ 맥주는덤으로
-
ㅈㄱㄴ (끄읕)
-
훈수 ㄱㄱ 0
https://orbi.kr/00070157908
-
나는 아직 2년전에 멈춰있음뇨
-
저는 오메가인갸요
-
ㅈㄱㄴ
-
설약 지망 08 2
갓반고 4.2에 고3 국수 모고는 1-2 왔다갔다 해서 정시로 돌린지 3개월 정도...
-
안녕하세여 예비 고3입니다.. 시대인재 수학 라이브 들으면서 과탐 엣지 플로우...
-
코딩 꿀팁 3
메모장에 코딩하면 쌉고수처럼 보일 수 있음
-
07인데 뭐 현역아닌가 빡모 88인데 3모때 1 될까요?이런거 올릴꺼임뇨
-
한약수 가능?
-
까만 건 글씨고 하얀 건 종이야
-
버튜버 콘서트 릴스마다 다 코드 뽑아버리면 어케됨 이러네 2
아 존나웃기네ㅜㅋㅋㅋㅋㅋ
-
현역들 수능 준비할 때 학교쌤이 얼마나 간섭했음? 18
학교쌤이 얼마나 간섭하는지 대충이라도 아는게 나을 것 같아서 물어봄 혹시 수행같은건...
-
어떰? 얼굴이 승무원상으로 예쁜데 목소리 중저음임
-
恋するおとめの作り方 사랑하는 여자아이를 만드는법 강력 추천드립니다 시간나시면 한번 보시길
-
음하하하 돈까스파스타바게트
-
쌍지런데 모고 2등급정도 이기상 이모다도 45이상 많음 근데 세지4등급...
-
친친은 하루에 15개씩 조지는데 본계는 1년에 3개씩 올림 멀어진 사람이 너무 많다보니 어색함뇨
-
애니 미쳤습니다 예전에 징송의 프리렌인 줄 알았다는... 다음 언제 나올련지
-
인싸들이 내가 오르비에 글 쓰는 이유 이해 못하는데 5
인싸들 스토리, DM = 오르비 글, 댓글 ….인스타는 올려봤자 뭐 몇명 보지도...
-
노상방뇨 4
상방이없단거임뇨 노상방뇨
-
평균 컷 몇 예상?
-
뇨뇨거리니까 9
배뇨마려움 그만좀 글좀 싸라 ㄹㅇ
-
올해초였나 그 때도 몇 명 썼었는데 돌고도는유행이노
-
중2때 겁나 했던 트위터에서 알게 된 트친이 고등학교때 알고 보니 한 살 후배였던...
-
블루록 저번주걸 안봤네 13
캬캬캬
-
안녕하세요? 국어 강사로 활동하고 있는 Mantra입니다. 19 20 21 수능...
-
뇨 말투 누가 시작했냐 10
아오
-
수능 끝나고 즐겼으니 갓생달릴차례인데 아이디어가 고갈남 저탄수로 먹을건데...
-
서성한 가고싶습니다 ㅠㅠ (확통은 실채점 나오면 백분위 약간 떨어질것 같긴합니다..)
-
뇨 말투 이거 3
진짜 ㄹㅇ 개쌉 중독성 있음뇨
-
스카 화장실 오는데 뒤에서 저 부르더니 저기..혹시 임용 2차 준비하시나요?...
-
이건 진짜임뇨... ..
-
가서 레이저로 상처주고 치료하면서 안티에이징하던데뇨
-
10km 완료 7
-
07이고 내년에 과탐 선택 고민중인데 화2를 할까 생각중인데 화2가 만점 목표면...
-
x에 대한 항등식을 세우면 안 되겠군
-
재수해서 과기대 기계공학과 재학중인데요 성적은 언미생지 87 85 2 92 93...
-
5달정도노력하면외모백분위를4까지올릴수있지않을까기대중임뇨
-
내신 독서 시험범위 이거 어떻게 공부해야할까요 ? 10
2020~2024 국어 독서 영역 수능 기출에서 한 지문만 나온대요 모든 지문을 다...
-
린 귀여움 17
-
하체 미친 7
개힘드네 다리에 주기적으로 힘풀리는거 억지로 붙드는중 집까지 또 한 20분 걸어야하는데 ㅋㅋㅠ
-
사실 안들어봄 들을 가치 있나용 강사 추천도 해줘 ㅜ
-
그래야만 한다
-
시발 말이 안 됨 ㅋㅋㅋㅋㅋ
첫번째 댓글의 주인공이 되어보세요.