[물리 칼럼] 전기력 유형 정성적으로 푸는 Skill - 전기력 방향을 이용한 추론
게시글 주소: https://ui.orbi.kr/00064124777
전기력 유형은 다음 2가지 종류의 조건 중 일부를 제시하고 나머지를 추론하는 퍼즐입니다.
조건 ① 각 전하의 부호와 크기
조건 ② 각 전하가 받는 힘
①에서 ②를 구하는 것은 매우 쉽습니다. 쿨룽 법칙에 때려 넣고 계산하면 되죠. 아래의 예시를 봅시다.
[240610] 전하 A, B, C의 부호와 크기를 먼저 결정하고 전기력을 구하는 문제
문제는 ②에서 ①을 구하는 경우입니다. 아래의 예시를 봅시다.
[230620] 전하 P가 받는 힘을 제시하고, 전하 A, B의 부호와 크기를 물어보고 있음
[220919] (나) 상황에서 A, B, C에 작용하는 힘의 방향을 모두 알 수 있음
[230919] 마찬가지로 (나) 상황에서 A, B, C에 작용하는 힘의 방향을 모두 알 수 있음
위 문제들에서 전하 A, B, C의 부호와 크기를 케이스로 나누어 풀면 ①번 조건에 대해 하나하나 케이스 분류로 풀다가 나가떨어지고 “전기력 문제는 감으로 푸는 것”이라고 생각해버립니다.
그런데, ②번 힘 조건에서 ①번 전하 조건을 즉시 찾아내는 도구를 충분히 갖고 있으면 케이스를 거의 나누지 않고 대부분의 문제를 풀 수 있습니다.
-------------------전하가 2개인 경우-------------------
전하가 2개인 간단한 상황부터 보겠습니다. 두 전하가 서로 밀어내면 부호가 같고, 끌어당기면 부호가 반대입니다. 두 전하의 부호가 같을 때 (+,+) 또는 (-,-)이므로 편의 상 (a,a)로 표현합시다. 두 전하의 부호가 반대일 때는 (a,b)로 표현하겠습니다.
(여기서 a, b는 서로 다른 부호를 의미합니다. 세 전하의 부호가 모두 같으면 (a,a,a)로 표현합시다. 이렇게 표현하면 고려하는 경우의 수가 절반으로 줄어듭니다.)
-------------------전하가 3개인 경우-------------------
전하가 3개일 때는 먼저 힘의 총합이 항상 0임을 이용해야 합니다. 예를 들어, 세 전하 A, B, C에 작용하는 힘의 크기가 -2F, F, ?라면 C에 작용하는 힘이 F임을 알 수 있습니다. 이어서 전하 A, B, C의 부호에 대해 생각해봅시다.
이 때, 불가능한 경우를 배제하는 방향으로 생각해야 합니다. A의 부호를 a라고 두고 시작합시다.
[Tip 1] 양 끝의 전하가 바깥 방향으로 힘을 받으면 양 끝 전하의 부호가 같다.
증명1. 힘의 방향이 (←, ←, →) 또는 (←, →, →)인 경우를 생각해봅시다. A가 왼쪽으로 힘을 받으므로 (a,b,b)는 배제할 수 있습니다. 한편, C가 오른쪽으로 힘을 받으므로 (a,a,b)는 배제할 수 있습니다. 결국 (a,a,a) 또는 (a,b,a)가 가능합니다. 두 경우 모두 A와 C의 부호가 같습니다.
증명2. 양 끝의 전하가 서로 다른 부호라면 A와 C는 서로를 끌어당겨 안쪽으로 힘을 받습니다. A, C의 부호가 다르기 때문에 가운데 위치한 B는 A, C 중에서 적어도 하나는 안쪽으로 끌어당깁니다. 따라서 A, C가 받는 힘이 모두 바깥 방향일 수 없습니다.
다음 문제를 풀어봅시다.
[231119] (가)와 (나)를 비교해보면 D가 추가된 후 B에 작용하는 힘이 0이 되었으므로 (가)에서 B에 작용하는 힘은 왼쪽 방향입니다. 이제 (가)에서 A, B에 작용하는 힘의 방향이 같으므로 (←, ←, →)로 힘이 작용하고 Tip 1에 의해 A와 C는 같은 부호입니다. A, C가 (+,+)라면 C에 작용하는 힘의 크기는 (가)에서보다 (나)에서 더 크므로 A, C는 (-,-)입니다. (나)에서 A, C가 B에 작용하는 힘은 왼쪽 방향이므로 A의 크기가 더 큽니다. 결과적으로 A, C의 부호 조합 4가지 중 2가지만 고려해도 되기 때문에 훨씬 쉽게 풀립니다.
[Tip 2] 인접한 두 전하가 서로 끌어당기는 방향으로 힘을 받으면 두 전하의 부호가 다르다.
증명 1. 힘의 방향이 (→, ←, →) 또는 (→, ←, ←)인 경우를 생각해봅시다. A의 부호를 a라고 가정합니다. A가 오른쪽으로 힘을 받으므로 (a,a,a)는 배제합니다. B가 왼쪽으로 힘을 받으므로 (a,a,b)는 배제합니다. 남은 경우는 (a,b,a) 또는 (a,b,b)네요. 두 경우 모두 A, B의 부호가 다릅니다.
증명 2. 인접한 두 전하 A, B가 서로 같은 부호라면 A와 B는 서로를 밀어내는 방향으로 힘을 줍니다. 가장자리에 위치한 C는 A, B에 같은 방향으로 힘을 주기 때문에 A, B 중 적어도 하나는 상대방으로부터 밀려나는 방향으로 힘을 받습니다. 따라서 A, C는 다른 부호일 수 밖에 없습니다.
다음 문제를 풀어봅시다.
[230919] 먼저 (나)에서 B, C, A에 작용하는 힘의 방향은 (→, →, ←)이므로 Tip 2에 의하면 A는 (-)입니다. 이제 (가)에서 C가 +x 방향으로 힘을 받으려면 B는 (+)이어야 하네요. 선지 ㄴ은 대칭성을 이용하면 쉽게 풀리고 ㄷ은 ㄴ과 사실상 같은 선지입니다.
이제, 힘의 크기가 0인 전하가 존재하는 경우를 생각해봅시다.
[Tip 3] 힘의 크기가 0인 전하가 있으면 다른 두 전하의 부호와 대소 관계를 구할 수 있다.
i) B에 작용하는 힘이 0인 경우 A, C의 부호가 같고 B는 내분점에 위치합니다.
ii) C에 작용하는 힘이 0인 경우 A, B의 부호가 다르고 C는 외분점에 위치합니다.
iii) A, B, C에 작용하는 힘이 0인 경우 위의 i)~ii)를 동시에 만족하므로 부호는 (a,b,a)입니다.
결론
[Tip 1] 양 끝의 전하가 바깥 방향으로 힘을 받으면 양 끝 전하의 부호가 같다.
[Tip 2] 인접한 두 전하가 서로 끌어당기는 방향으로 힘을 받으면 두 전하의 부호가 다르다.
[Tip 3] 힘의 크기가 0인 전하가 있으면 다른 두 전하의 부호와 대소 관계를 구할 수 있다.
기회가 되면 대칭성과 변화량을 이용해 정량적으로 판단하는 방법도 써보겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기출을 곁들인
-
ㅇㅈ 19
-
ㅇㅈ (하트) 5
-
여르비맞다니께..ㅇㅈ 26
작년 졸사찍을때
-
상관 재탕 ㅇㅈ 8
사실상 난 다 깐거 아닐까..
-
오르비 성비가 구라가 아니었네
-
팁좀 주세요 0
아시다시피 수능까지 10일 남았습니다. 지금까진 문제만 죽어라 풀었고 학원,...
-
못생겨서 편의점도 못가고 편의시설도 이용못함 그래서 불편의점이랑 불편의시설 감...
-
1등급 받는 분들 말고 2-3등급 받으시는 분들은 어떤 난이도 선호해요? 저는 이번...
-
내마음에.
-
갑자기ㅇㅈ 0
안아줬어요
-
Oㅈ 9
20살때 ㅂㅂ
-
좀 길긴해서 2배속으로라도 추천 개웃김 https://youtu.be/spFfreweTtQ
-
펄
-
친구련이랑 헬스 얘기하다가 내가 어떤어떤 운동법이 자극 잘오더라 했는데 멸치 훈수...
-
http://www.megastudy.net/campaign/study/qcc_vie...
-
힘드네 0
그래도 해내야지
-
어? ㅇㅈ하신 오르비언 맞으시죠? ㅎㅎ
-
수능이 다가올수록 진짜 개쫄림.... 이 글 읽는 여러분 모두 원하는 곳에 갈 수...
-
ㅇㅈ 9
에도 없다!
-
스토리 올릴때마다 꽤 빨리 보는데 누구지..
-
수능 끝나고 0
수능 끝나면 뭔가 생산적인 활동을 하고 싶은데 어떤 것이 있을까요??
-
새로운사진 ㅇㅈ 10
진짜인증한거처럼댓글과좋아요 ㄱㄱ
-
인증 아님 7
음 역시 귀엽군.
-
ㅇㅈ 16
하관 ㅇㅈ
-
만약 인원이 적은 과목 한다고 했는데 어떤애가 인원적어서 1등급따기 어려운데 왜...
-
적당한(?)난이도엿으먄 좋겟어여 평가원보다 살짝 어려운
-
욕을 왜 이렇게 많이 썼지 내가봐도 역겹네 ㅋㅋㅋ
-
어떤 걸 뜻하는 건가요? 베니오프대랑 유사하게 단면도로 봤을때 점점 깊어지는 부분을...
-
물리1 질문 1
위 풀이과정에 어디서 틀렸는지 알고싶습니다. 사진속 풀이가 난해하여 저 전반적인...
-
친추하장
-
웃음이 아예 0에 수렴하는듯 ㄹㅇ..
-
생2 2등급 1
생명2는 감이 안잡혀서 그러는데 생2 개념이랑 기출 어느정도 돌리면 2는 뜰까요?
-
공부해그냥
-
지인선모 3
13 15 29 30 84점 1컷 89는 수능기준 88점 백분위 95 개미 털기...
-
위태롭던 우리 일년은
-
락스 마시다가 배 터지겄네
-
존나 기만이노
-
재밌어 보이길래 꼽 좀 낄게요. 참고로 케이스는 제돈 주고 산거아니에요.선물.받은겁니다.
-
실모 푼게 거의 없어서 남은 10일 동안 3~4개 풀어볼 생각입니다. 푸셨던 실모...
-
jpop이고 가수는 요루시카입니다!
-
축구,군대,야구 아는체좀하다가 군번 먼지 몰라서 전시근로역인걸로 밀었는데...
-
진심 ㄷㄷ이네
-
ㅇㅈ 뒷북 20
펑 ~.~ 늘 먹던 맛이라 맛없음 주의
-
더프 84 89 88 42 44 자살 수학 이해원 3-0 93 설맞이 2-1 풀다가...
-
시간에 인증하는건 흔치 않은거같은데,,, 아닌가
-
여기에다 올려도 되나요?
-
ㅠㅠ
-
제하하하하하하
-
하지마 애들자존감낮아져서 인증못함 하던대로해 어케생기든 ㄱㅁ이나치고나가
로버트 오펜하이머의 수능 물리학 ㄷㄷ