등차수열 합구하는거 질문있서요
게시글 주소: https://ui.orbi.kr/0006376186
등차수열의 합 sn이 an^2+bn 이라고하면
an은 이걸 미분한 2an+b 다음에 초항을 맞춰주면 되잖아요??
이게 왜 이렇게 나오는지 궁금합니다. 일차 이차함수의 원리가 잇는것도 같고...
답변 기다리고잇을게요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이감6-10 0
연계랑 기출 봐야돼서 시간 많이 없는데 그냥 시간 안재고 푸는 거 괜찮나요?
-
다 왔다 이제
-
정상수 UP합니다
-
9평 성적표 보고 뽕채우고 출발
-
그거 하려면 omr로 시험지를 거의 안가려야 하는거 아님? 그냥 모른척 가로로...
-
늦버기 1
끄아아 오늘두 힘내보아요
-
싹다 버려야되냐 1
독재슬슬 책 정리해야하는데 시대컨들 새책이랑 실모들 ㅈㄴ쌓여있음 당근할까???? ㅜㅜ 아깝다
-
시계 세워놓잖음 보통 근데 이거 청테이프로 고정시켜도됨? 종이로 쳐서 떨어뜨릴까봐...
-
D-3 계획 0
국어 상상 5-10 고전시가 5작품 수학 샤인미 3 킬캠 2-4 영어 마피 2-3...
-
ㅠ….며칠전까진 근자감 맥스였는데 ㅈㄴ착잡함 다들 오늘도 ㅎㅇㅌ
-
그 대신 잠이라도 야무지게 잠 가볼까
-
이시점에 4
요즘 뭐하면서 살어? 공부말고
-
ㅎㅇ 3
ㅎㅇ
-
이시간에 3
카페연곳이 없어서 무인카페에서 아메리카노로 잠도깰겸 목 축이는 중 ㅋ
-
ㅈㄴ 무거운 무언가에 짓눌려 있는 느낌 머리가 굳은거 같고 숨이 턱턱 막히는데
-
나힐순tv
-
이제는 수능 끝나고 돌아오겠습니다. 모두 원하는 대학 가길 바랍니다. 화이팅해보구요
-
오뿌이 기상 4
잘잣다
-
실상은 혜택이 아닌데 혜택이라고 강조해놓고 비싸게 돈받고 판거 좀 역겹네
-
오노추 1
클라우드쿠쿠랜드 - 다시 옛날 인디밴드 노래임 다들 오늘하루도 힘차게~~ 너무...
-
국어랑 타임어택심한 탐구는 끝까지 푸는게 낫지않음? 수학 영어는 쓰되 국어...
-
아아아악
-
ㄹㅇ
-
컨텐츠가 남네 2
흠 .. 쩔수있나
-
헷갈리는 선지 2개 남아서 시험 끝날때까지 뭐찍지 간보다가 종치는 동시에 소리에...
-
나: 아;; ㅎㅎ 대학은 아니고...네....ㅎㅎ 이웃집 아저씨: 아~........
-
얼버기 2
졸려요
-
좋아 0
좋은 아침
-
몰라 어케든 되겠지
-
끔찍한 악몽이군….
-
수능 D-3…문제·답안지, 경찰 경호 속에 85개 시험지구에 배부 5
(세종=연합뉴스) 김수현 기자 = 교육부는 11일부터 13일까지 2025학년도...
-
laundry sanitizer 써요 섬유유연제 대신 써도 되고 같이 써도 돼요...
-
얼리버드수면 2
10시에일어나기
-
대학교에 다닐때가 정말 행복한 것이었다는 사실을 사회에 나가면 깨닫게 됩니다...
-
베카리아 0
종신노역형은 형벌을 받는 범죄자보다 구경하는 시민들에게 더 큰 공포를 느끼게한다...
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
이제 끝낼시간이다
-
뭐 다들 아는 내용 가지고 타임어택이랑 낯설음으로 승부하는 거밖에 더 될까요...
-
힘내십쇼 저야 물론 님들이 들으면 그뭔씹 반응을 보일 지방대에 왔지만 그래도 행복한...
-
하 ㅅㅂ
-
작년 구사십일생 1
찍특 통한 거 아님? 이 정도면…
-
1교시발 0
인생망했다
-
https://forms.gle/eXKuM7vP4ph7weSg6 (설문 링크)...
-
생윤 실모 추천 1
생윤 실모 김종익T 퀄모인가 파이널 그거 풀려하는데 괜찮나여? 생윤 실모가...
-
존나 부담스럽네 시발 저 수능 던졌어요..
-
가채점표 쓸때 1
답 외워놨다가 나중에 써도 되나요?
-
대성패스 구매하시고 밑에 추천코드 입력하시면 저랑 추천해주시는분이랑 서로 매가커피...
그냥 우연히 맞는거 아닌가요 초항 맞춰주는거 자체가 a만 고려하고 b는 그냥 끼워맞추는거같은데
미분과 다항함수 가 관련이잇다고 네이버검색해보니 그러시던데 정확한 설명을 못찾았네요.
뭔가 있을거같은데 ㅋㅋㅋㅋㅋ
어 먼가 좀 신기하긴 하네여 최고차항만 고려했을때 다항함수의 정적분 최고차항이랑 시그마 최고차항이랑 같네요
등차수열의 일반항은 일차함수꼴이고 등비수열은 이차함수꼴이 나오는것과 관계가 잇을까여
등차수열an=kn이라고 하면
등차수열의 합은kn(n+1)/2 이잖아요?
저 식을 그냥 임의로 An^2+Bn으로 놓는거죠
그런데 A가 k/2이니까 공차는 (2 x A)n
이렇게 하는게 논리적이긴한데
미분해서 구하는게 더 편하긴하죠
수열을 y=ax+b위의 점으로 표현할수있는데 An=1×An이라하면 Sn을 직사각형의 넓이의 합이라고 할수있고 이게 함수의 밑넓이랑 비슷해서 그러지않을까여
bn이 뭔가요
저런 공식은 처음보는데..?
등차수열an=kn이라고 하면
등차수열의 합은kn(n+1)/2 이잖아요?
저 식을 그냥 임의로 an^2+bn으로 놓는거죠.
정상모쌤이 그렇게 알려주셨는데
미분으로 그 등차수열 공차구하는 건 아직 증명 못하셨다고 알고있어요.
오호라
그냥 구하기편하게 참고만하라고 하시더라구요ㅋㅋ
아직증명이 안된 야매? 엿군요ㅋㅋㅋ 감사합니다.
'왜'라는거 수험생한테 되게 안좋은 버릇인 것 같아요 그냥 그렇다면 그런가보다 하고 받아들이시길...
궁금증이 생겨서 질문해본거엿서여 답변감사합니다
엥 왜 가 안좋은버릇이라고요??
네 저는 그렇게 생각하는데요
왜라는 물음에 대한 제대로 된 답을 가지고 있지 않으면 잊어먹었을때 다시 유추할 수도 없고 애초에 왜라는 거에 답을 할 수 없는것은 개념이 정확하게 잡히지않았다는거 아닐까요
몇몇 야매들이야 왜그런지 몰라도 급할땐 쓸 수 있지만 그런것들도 왜그런지 최대한 알아는 놓는게 좋죠
왜그런지 모른채로 그냥 문제만 풀고 이건 이렇게 풀면 되네하고 넘어가는것은 상당히 위험하다고 생각합니다만
수능에서는 분명히 개념을 제대로 집고 넘어가지 않았을때 허점을 드러내게 하는 문제들이 나옵니다
글쌔요 단적인 예로 선생이 정적분정의 식 알려주고 이거야 xk는 이거설정하고 이렇게이렇게하면 넓이가 나와 했는데
그에대해 궁금한게 더이상 안생기면 심화로 생각해서 푸는건 절대못풀텐데요
그리고 윗분말씀대로 암기만으로 툭툭치고 아는건 시험장에서 잘 못써먹는다고 생각
1+1이왜2냐 이런 질문도아니고 표면적인현상에대한 이론적인 이유가 뭔지 혼자공부하다보면 궁금증이 생길수도 있는데 왜죠..?
이거 현우진쌤도 알려주셨는데ㅋㅋㅋ 살짝미분하면 된다고ㅋㅋㅋ 증명하지말고 그냥 받아들이래요 소소한 팁으로
ㅋㅋㅋㅋㅋ답변 감사합니다