극한의 보다 엄밀한 표현 2 (ft. 231114)
게시글 주소: https://ui.orbi.kr/00063081763
(더 재밌는 경험을 위해 앞 글을 읽고 오시면 좋습니다)
이전 글에서 이 문제 다루며 입실론-델타 논법을 통한 함수의 극한을 엄밀하게 정의하는 법에 대해 살펴보았죠? 그렇게 해서
이런 식으로 함수 h(x)의 x=1에서의 좌극한을 조사해봤습니다. 그런데 이 이야기 할 때
극한을 두 번 연속 적용하는 상황과 2변수 함수의 극한을 다루는 듯한 상황에 있어 둘을 같다 볼 수 있느냐가 중요해보이고 같다 볼 수 없다면 본문의 설명이 잘못되었을 가능성이 있다고 했었죠? 이 식의 좌변은 문제에 주어진 상황이고 우변은 제가 임의로 해석하여 오차 범위에 초점을 맞춘 설명을 제공했던 이전 글의 상황입니다.
먼저 이 '오차 범위'를 통한 극한의 이해부터 다시 살펴봅시다. 입실론-델타 논법을 지난 글에서 소개했기 때문에 교육과정 외가 아니냐 하시는 분들도 있는데 명백한 교육과정 내 내용임을 확인해봅시다!
우리가 미분계수를 논할 때 각 등식의 우변에 있는 평균변화율의 극한이 수렴하면 그 수렴값을 미분계수라고 정의합니다. 이때 위 같은 경우는 x와 a 사이의 오차를 h라 할 때 h에 대한 극한으로 극한식을 작성한 것이고 아래는 오차를 드러냄 없이 x와 a를 직접 넣어서 점 (a, f(a))와 점 (x, f(x)) 사이의 평균변화율의 극한을 의미함을 더 직접적으로 드러내고 있습니다.
그리고 이 표현이 지난 글의 아이디어에서 핵심인 부분이었는데
이렇게 해주면 epsilon만 h로 대체함으로써 같은 표현임을 보일 수 있죠? 다시 말해 교육과정 내에서 직접적으로 배우는 표현을 가져온 셈입니다. 이는 꼭 독립변수에 대한 관점 말고 종속변수에 대한 것으로도 생각해볼 수 있는데 이를테면
이런 느낌이죠! 이럼 종속변수에 대한 오차가 0으로 간다는 맥락으로 우리가 생각해볼 수 있는 것이니까요
여담이지만 이 아이디어를 활용하면 위와 같이 실수 전체의 집합에서 정의된 연속함수 f에 대해 함수 g를 떠올려볼 수도 있겠습니다. 오늘 점심 먹고 long/short run aggregate supply curves에 대해 생각해보다 문득 떠올라서 노트에 적어두었던 표현인데 개인적으로 재밌다 느꼈어요 ㅋㅋㅋㅋ 조만간 문제 만들 때 써볼 생각!
다시 이 상황으로 돌아와서, 이를 우리가 조금 더 교육과정스럽게(?) 바꾸어 보면 다음과 같겠습니다.
자 여기서 지난 글의 오류를 언급할 필요가 있겠습니다.
지난 글에서는 h_3과 h_1의 대소 비교를 할 수 없기 때문에 (2가지 경우 존재) h(x)의 x=1에서의 좌극한을 논할 수 없다고 했습니다. 하지만 이는 잘못된 설명입니다. 우리는 다음의 사실에 초점을 둘 필요가 있습니다.
즉, h_3을 0으로 보내기 전에 일단 h_3은 양수라는 것입니다. 우리가 h_3을 충분히 작은 양수로 생각한 후 이를 0으로 보내는 것으로 h_3을 0으로 보내는 과정을 나누어 생각해볼 수 있겠다는 뜻입니다.
그럼 h_3을 충분히 작은 양수로 생각할 때 우리가 작성했던 이 극한은 다음과 같이 처리할 수 있습니다.
이전 글의 설명과 차이가 느껴지시나요?
이전 글은 h_1에 대한 극한과 h_3에 대한 극한을 동시에 고려하려했기 때문에 h_1과 h_3의 대소 관계를 비교할 수 없다는 점에서 극한이 발산한다는 결론에 도달했습니다.
하지만 실제로는 극한을 적용하는 순서에 따라 극한값이 달라지는 경우도 존재하기 때문에 극한을 적용할 때 그 순서를 의식하는 것은 매우 중요하다 말할 수 있겠습니다. 첨언하자면 이 생각은 지인선 님으로부터 배운 생각임을 밝힙니다.
이제 극한을 마저 처리해주면
이 되겠습니다. 다시 말해 [2023학년도 수능 14번]에서 함수 h(x)의 x=1에서의 좌극한은 오차 범위의 대소 관계를 알 수 없기 때문에 발산하는 것이 아니라 3f(1)로 수렴합니다.
같은 방식으로 h(x) 식을 직접 작성해보면 다음과 같겠습니다.
(참고로 이는 대성마이맥 정병훈 선생님의 해설 강의 속 판서임을 밝힙니다. 출처: https://youtu.be/r5zNrulBZ9o)
교육과정 내의 내용으로 시도해본 생각이었지만 결국 마음에 걸렸던 부분에서 오류가 발생해 잘못된 설명이었음이 밝혀졌네요. 그래도 재밌는 경험이었다 생각합니다! 저는 수학 강사가 아니지만 후에 수학 강사가 된다해도 내가 이해하지 못한 내용을 그대로 읊는 것보다 내가 이해한 대로 질문을 한 뒤 그것이 잘못되었음을 학생 분들과 함께 나누는 쪽을 따를 것 같아요. 그게 더 좋은 강사의 모습이라 생각하기도 하고요! 나도 모르는 걸 그럴싸하게 설명하는 것보다는 솔직하게 "나도 몰랐다. 그런데 내 생각의 이 부분이 잘못되었고 이렇게 생각하는 것이 적절했다. 너희도 이런 오류를 범하지 않도록 조심해라!"라고 말해주는 것이 서로에게 더 적절하다 생각합니다.
그럼 글을 맺으며 함수의 극한을 엄밀하게 정의하는 방법인 입실론-델타 논법을 다시 살펴봅시다!
우리가 이러한 극한을 봤을 때 다음과 같은 과정을 거쳐
1. 극한이 존재할지 추정해본다. x를 a에 대입해보거나 x=a+0.000000001을 대입해보는 식으로
2. 극한이 존재할 것 같다면 어떤 값으로 존재할지 추정해보자. 그 값을 L이라 할 때
3.
관계를 만족하는 임의의 양수 epsilon에 대해 항상 대응되는 양수 delta가 존재하면, 다시 말해 delta가 epsilon에 대한 함수이면
4. 함수 f(x)의 x=a에서의 극한값을 L이라 정의한다.
함수의 극한을 엄밀히 다루어볼 수 있겠습니다.
a^2에 루트를 씌운 것이 절댓값 a와 같다는 점에서 위의 두 표현도 ㅣx-aㅣ, ㅣf(x)-Lㅣ로 표기할 수 있습니다. 다만 입실론-델타 논법을 다변수함수에 적용할 때 더 직접적으로 확인할 수 있는 오차 범위에 대한 생각을 1변수함수에서도 떠올려볼 수 있도록 저렇게 적었어요!
참고로 이러한 부등식 관계를 만족하는 임의의 양수 epsilon에 대해 항상 대응되는 양수 delta가 존재한다면 우리는
n변수함수 f의 x_i=a_i (i=1, 2, 3, ... , n) 에서의 극한이 L로 수렴한다고 말합니다!
그래서 다변수함수의 극한을 배우시고 입실론-델타 논법을 배우신 후에는 함수의 극한을 조사하는 문제가 부등식 관계를 조사해 delta를 epsilon에 관한 수식으로 나타내는 (혹은 둘에 관한 부등식을 세우는) 문제로 변하는 것처럼 보여요! 현 고등학교 교육과정에서 함수의 극한을 다루는 상황과는 사뭇 다를 거예요
그래서 처음엔 delta, epsilon이라는 표현도 낯설고 부등식 관계 잡는 것도 중학교 때 이후로 오랜만에 해서 어색하고 하실 수 있지만 몇 번 해보시다 보면 참 흥미로운 주제라는 사실을 깨달으실 수 있을 겁니다 ㅋㅋㅋ
그럼 다들 오늘 저녁도 파이팅하시고 다음주 6모 좋은 결과 있으시길 바랍니다~
p.s. 간혹 수학 질문이나 학습 관련 이야기해도 괜찮겠냐는 댓글이나 쪽지를 남겨주시는 분들이 있으신데 편하게 남겨주셔도 되어요. 빠르진 않아도 하나씩 꼭 확인하고 답 달아둘테니 학습에 적절한 도움 받아사기면 좋겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요 유튜브 간간히 올리고 있는 해서입니다. 수능이 3일 남은 시점에서...
-
원래 있던 대학이 너무 싫어서 반수하게 되었는데 3달동안 수학 선택과목, 탐구 2개...
-
공군점수되나요? 2
자격증 69점 출결 18점 봉사8점 다자녀2점 해서 총 97점인데 내년6월 공군 커트라인가능하겠죠?
-
여기서 B지층군 퇴적- 화성암 D분출- 침식 -부정합면 형성 -침강 - A지층군...
-
해원모 28번은 0 1 둘다 그냥 쉬운4점급이던데 수능날에도 이럴 수가 있나요??
-
녹차 아이스크림 저거 jmt입니다!!
-
도와주세요 3
수학 32점 3등급 되고 싶어요
-
?
-
그냥 다닐걸 2
그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸 그냥다닐걸...
-
3등급 받고 싶어요 내년 수능 볼거에요...ㅠ
-
미적분 기준 32점 나옴 3등급 받을수있을려나요...도와주세요 국어 3(현재 0점)...
-
생명 인강으로도 듣는거 어떤가요? 듣는다면 누구 들어야 되나요?
-
ㅈ됐다 0
유튜브 조금 보다가 마음에 드는 노래 있어서 쉴때마다 듣다가 국어 수학 실모 푸는데...
-
대부분은 떠났음. 입시 성공했거나 다른 길을 찾았거나.. 난 왜 아직도 여기 있는...
-
캬 좋다잉
-
작년엔 진짜 좋았는데
-
지인한테 400만원 통수당하고 울며 겨자먹기로 어제부터 물류센터 알바를 나가기로...
-
생윤 질문 1
지금 생윤 빨더텅을 다 풀었는데 남은기간 뭐해야할까요ㅔ 해
-
어메이징 하겠죠
-
홍대는 이름값에 가려진 찐 거품대학이라고 생각함
-
입구가 있어서 들어갔고 출구만 바라보며 정해진 길대로 걸어왔는데 출구가 무너짐...
-
나루토 원피스 0
뭐볼까요
-
장발하고 싶다 0
-
만관부
-
너무 힘들다 0
불안해서 잠이 안온다
-
아 큰일났다 0
왜 잠이 안오지 1시간동안 누웠다 왔음..
-
https://youtube.com/shorts/zSPN9fFydkE?si=ccVm0...
-
D-3 2
좀 느낌 다르긴하네 물론 난 수능안침
-
시대인재 단과를 라이브로 들을 예정인데 강기원 쌤은 양 많다던데 김현우쌤 반은...
-
3월에 살때 교재포인트 20만까지 포함으로 82만원 준거 기록에 남아있는데 내년...
-
한마디씩만 충고 부탁해요 술은 권하지 말고
-
영악한애들빼고 순수한애들 많아 ㅠ
-
예비고3 학생인데 미적은 김성호쌤꺼 들을거같습니다 안가람 선생님 공통을 지금...
-
기분이 이상함 0
긴장되는건 아니고 오히려 기대되는데 뭔가 기분이 이상해
-
다들 ㅎㅇㅌ 2
-
누가 더 호감?
-
여기서 다른건 다 알겠는데 ㄹ이 이해가 안되네요... 조사 대상자의 현재 계층과...
-
잠이안와 3
도와줘요
-
기출 도움 많이 받으셨음? 다들 n제 실모만 벅벅 풀길래 좀 궁금하네 그리고...
-
판의 내부에서 일어나는 화산 활동은 차가운 플룸으로 설명할 수 있다 4
판의 내부에서 일어나는 화산 활동은 차가운 플룸으로 설명할 수 있다 이거 틀린거죠?...
-
쫌만더 0
하면 사탐두과목다 만점나올거같은데 제발 제발 제발 "2개월만에 사탐 노베에서...
-
여기서 추천해주실만한 회차 있을까요?! 다 못 풀어볼 거 같아서요,,,ㅠ
-
현역때 긴장 너무해서 잠 한숨도 못자길래 반수할땐 위스키 2잔 마시고 잠 ㅋㅋㅋ...
-
시험떨어졌네 1
왜사냐진짜 ㅅㅂ
-
ㄹㅇ개노베 8등급 이차함수도 지금 배우고있는사람이면 둘중 누구 듣는게 더 좋을까요...
-
5만원 개아깝네 걍 하지말걸
-
고전소설만 존나게 파고 헌대소설은 많이안했는데 미리 안보고가면 난해할만한 지문뭔지...
-
2년동안 수능보느라 5시 이후로만 봤는데 이제 드디어 글 리젠률 구경좀 하겠구만
-
수능꿀팁 3
이시간에 여길 왜들어와있니........... 자라
첫번째 댓글의 주인공이 되어보세요.