편미분이 뭘까?
게시글 주소: https://ui.orbi.kr/00062869462
직관적으로 생각해보면 '편 들어 미분하기'입니다. 그런데 사실 우리가 수능 수학을 공부하며 접하는 대부분의 상황에선 미분할 때 '편을 들' 일이 없습니다. 편미분에서 편을 든다는 것은 독립변수들 중에 어떤 한 독립변수의 편을 든다는 것인데, 우리가 수능 수학을 공부하며 접하는 함수들은 모두 독립변수가 1개인 (주로 x인) 1변수함수들이기 때문입니다.
이처럼 하나의 독립변수 x에 대해 하나의 종속 변수 y가 결정되는 대응 관계를 우리는 1변수함수라고 말합니다. 수학(하)에서 함수에 대해 공부할 때 x값 하나에 y값 하나가 대응되면 함수라고 배웠죠?
그런데 이런 것도 함수입니다. x_1, x_2값 하나씩에 y값 하나가 대응되는 2변수함수입니다. 주로 이런 식으로 표현하기도 합니다.
다시 말해 독립변수 x, y에 대해 종속변수 z가 결정되는 대응관계인 것이죠. 일반화하여 n변수함수를 다음과 같이 나타내어봅시다!
이것은 n개의 독립변수에 대해 1개의 종속변수가 결정되는 n변수함수를 의미합니다. 이렇게 1개의 독립변수가 아닌 여러개의 독립변수를 갖는 함수를 우리는 '다변수함수'라고 합니다. 여기서 '다'는 한자 '많을 다'를 떠올리시면 되겠습니다. 경제학도로서 대표적인 다변수함수가 뭐냐 물으면 '생산함수'를 답할 수 있겠습니다.
이는 4변수함수입니다. Y는 종속변수로 '생산량'을 의미하고 명목 GDP에서 물가 수준을 고려해 조정한 실질 GDP를 의미한다고 말할 수 있습니다. A는 기술 수준이며 F는 함수를 의미하고, 네 가지의 독립변수 L, K, H, N는 각각 노동, 물적 자본, 인적 자본, 자연 자원을 의미한다고 말할 수 있습니다. 자세한 것은 '멘큐의 경제학' 같은 경제학 관련 도서를 참고해보시고... 아무튼 이런 식으로 우리는 다변수함수에 대한 이해를 갖췄습니다.
우리가 평소에 접하던 1변수 함수에 대해서는 도함수의 정의를 통해 정리한 미분법에 근거하여 우리가 함수 f(x)의 도함수 f'(x)를 구할 수 있었습니다. 그런데 다변수함수로 넘어가면
독립변수가 2개이다보니 f'(x, y)와 같은 표현을 쓰기엔 적절하지 않지 않나 싶은 느낌이 오면 좋습니다. 그래서 우리가 앞으로
와 같이 각 독립변수에 대한 미분을 해줄 거예요. 그리고 이렇게 독립변수들 중 하나에 편을 들어서 미분하는 것을 '편미분'이라고 하겠습니다.
도함수의 정의를 떠올려볼 때 편도함수의 정의도 비슷하게 되어요.
임과 비슷하게
2변수함수는 이렇게
n변수함수의 i번째 독립변수에 관한 편도함수는 이런 방식으로 정의할 수 있는 것이죠!
예를 들어보면 다음과 같습니다.
이러한 2변수함수가 있을 때 두 독립변수 x, y에 대한 편도함수는 각각 다음과 같습니다.
즉, x에 대한 편도함수를 구할 때는 'y를 상수로 인식하고' x에 대해서만 미분하면 되고
y에 대한 편도함수를 구할 때는 'x를 상수로 인식하고' y에 대해서만 미분하면 되는 것이죠!
전자는 y가 상수니까 대충 y=3 정도로 두면 1/x를 미분해서 -1/x^2가 됨만 생각해주면 되고
후자는 x가 상수니까 e^x도 상수함수가 되어 미분하면 0이 될 것이고 y/x는 대충 y/3으로 생각해주면
1/3만 남아 일차함수 미분을 떠올려주면 되는 것이죠
그럼 1변수함수에서의 도함수는 접선의 기울기를 알려주었는데 다변수함수에서의 편도함수는 무엇을 알려주냐? 라고 할 때 대충 말하면 접평면의 방정식을 구할 때의 각 독립변수 축에 대한 기울기(?)를 알려줍니다. 이에 대한 것은 대학 미적분학 공부하시며 각자 더 깊이 알아보도록 하고..
언제 편도함수를 수능 수학에 적용할 수 있는가 하면 아래와 같은 문제를 풀 때입니다.
f가 미분가능한 함수이고 모든 실수 x, y에 대해 다음이 성립한다고 합시다.
우선 f(x+y)와 f(x), f(y)에 대해 x=y=0을 대입하면 A=A+A+B꼴이 되니 무언가 정보를 얻을 수 있겠죠?
정리해주면
f(0)=1을 얻습니다. 그리고 이제 양변을 x에 대해 편미분해보면
를 얻을 수 있겠고 양변을 y에 대해 편미분해보면
를 얻을 수 있겠죠. 그럼 x로 편미분한 식에 x=0을 대입하거나 y로 편미분한 식에 y=0을 대입하면
를 얻을 수 있어 이제 양변을 적분해주면
f가 2차함수임을 편하게 얻어낼 수 있겠습니다.
뭐 이런 문제 유형은 과거 수능에 출제 되었었고 요새는 내신에 나오거나 내신에도 잘 나오지 않는 것으로 알고 있어서 편미분이 직접적인 쓸모는 크게 없어보이기도 합니다. 그래도 알아두면 언젠가 쓸 날이 오지 않을까요! 뭐 정 없으면 재미로 알고 있는 것도 좋겠고요 ㅎㅎ
이외에도 '일단 이건 없다 생각하고'와 같은 논리는 수능 수학 문항들을 해결할 때 종종 쓰입니다. 그러니 내신 준비할 때처럼 '출제범위에 적합한' 것들만 공부하기보다 일단 걸리는 대로 공부해 두는 것이 스스로에게 유리하겠죠? 제 고등학교 때 영어 선생님께서 '공부할 때는 그물을 넓게 쳐라'라고 말씀해주신 것도 비슷한 맥락으로 받아들이고 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설공 위에는 메디컬 있으니까 사회에서 위치는 설공 < 설경 아닐까
-
오늘 여성시대에 글 올라오려나
-
.
-
어려울려나
-
현역 작수 55555 뜬 노베입니다... 수의대가 너무 가고싶어서 삼반수 하려고...
-
머리는 많이 좋은게 아니면 삶이 거기서 거기임
-
ㅋㅋㅋㅋㅋㅋ
-
황급히
-
31이 늙은거지 아.
-
를 거꾸로 말해보세요
-
트럼프 "조만간 군, 교육부 조사하도록 머스크에 지시" 1
[서울=뉴시스] 최현호 기자 = 도널드 트럼프 미국 대통령은 미국...
-
라떼한잔 드링킹 하면 언제든지 대변방출쇼 ㅆㄱㄴ이네요 지금실천중입니다
-
담배한대피우고 1
공부해야지 ㅅㄱ
-
잠잠해졌길래 뻘쭘해서 쓰다 말았…..
-
나도 회계원리 먼저 듣고 중급 하는게 맞는거 아는데.. 수강신청 못해서 회계원리 못...
-
도파민 중독자들
-
ㅈㅅ
-
홍익대 인문자전 예비39번 1차 추합 가능할까요?
-
나같은 정병아싸새끼는 어릴 때도 잘 못 어울렸는데 나이 먹고 대학가면 찐다 확정임
-
쉽지않다
-
이화여대가고싶다 1
이화여대가서트리플에스유연이랑밥먹고싶다
-
나이가 많아도 인싸는 인싸고 나이가 적어도 아싸는 아싸더라...
-
외대 건대 11
외대 미컴 vs 건대 미컴 어디가 낫나요.. 걸고 재수할건데 만약을 생각해서...
-
해방 이화 2
-
이젠 과팅 신청하면 미친놈 취급 받을텐데
-
학원 관리직으로 마감업무 하는데 주4일 2시간 반 하니까 60 평일/주말 개힘드게...
-
6학점은 진짜 에반데 내 인생은 진짜 왜 이러냐
-
삼수생<--진짜 틀딱처럼 느껴짐 21살,22살<-어린거같음
-
x반 ㅂㅅ은 저럴거면 왜 쳐온거냐
-
현타온다 9
내인생
-
01 아니라고 7
크아아아아악
-
[속보] ‘99억 코인 은닉’ 의혹 김남국 전 의원 1심 무죄 1
국회의원 시절 99억원에 달하는 가상자산(암호화폐) 보유 사실을 숨기려 허위로...
-
21세기는 늙은거 아님 ㅇㅇ
-
밀레니엄 세대 이후야 그리고 ㅅㅂ
-
얼마 전 전역해서 올해 3-1 복학하는 학생입이다 사실 진로가 아직도 명확하지...
-
에타보니까 빵났다는데
-
점공보고 느낀점임.. 왜 폭인지는 모르겠다만
-
지금진도는3주째밀린상테. 이것이과외인가.
-
숭실대 합격생을 위한 노크선배 꿀팁 [숭실대 25][교환학생 어떻게 가나요?] 0
대학커뮤니티 노크에서 선발한 숭실대 선배가 오르비에 있는 예비 숭실대생, 숭실대...
-
존나 자비로운 입시 전형임 정시에서 국어 2.7 나왔다? 국숭 열차임 걍
-
아이 초와라 1
호달달
-
평가원 #~#
-
엔비디아 풀매수 비트코인 풀매수 밈코인 풀매수 고등학교 자퇴하고 알바해서 시드머니 모으기
-
시작하자 롤 내전구함 TEAM 의대 VS TEAM 한의대
-
제친구가 내신 1.3등급 정도 받다가 고2때 정시파이터로 돌리고 의대 가더라구요...
-
근데 공기중에는 있음
-
고3 겨울방학때 기숙윈터가서 전국 각지 학생들이랑 똑같은 시험을 볼 기회가 있었는데...
-
수시 정시 갈드컵 ㅇㅇ
-
이거 3점짜리 하나라도 계산삐끗하면 바로 백분위가 아작나는데 막 20분컷해도...
-
강남 8학군 반수생 애들은 적어도 고등학교 안다님
혹시 편미분은 모든 변수 중 하나만 변수로 보고 나머지 변수는 그냥 상수 취급해서 미분하는거고
음함수 미분은 모든 변수를 변수로 인정해주고 미분하는게 맞나여
음함수로 정의된 함수는 2변수함수에서 바라볼 때, 우리가 z=f(x, y) 이런 식으로 함수 식을 정리할 수 있는 것이 아니라 F(x, y, z)=0 이런 방정식의 꼴로 주어진 식에서 x, y를 결정할 때 z도 하나의 값으로 결정되면 그것을 우리가 음함수로 정의된 함수라고 말합니다.
다시 말해 z=f(x, y)에서 (편미분 기호 round를 그냥 d로 표기할 때) 편도함수는 dz/dx와 dz/dy가 존재하는 것이고 F(x, y, z)=0에서도 편도함수는 dz/dx와 dz/dy가 존재하는 것이죠.
편미분은 n개의 독립변수와 1개의 종속변수에 대해 독립변수 중 하나에만 초점을 두고 나머지를 상수처리 한 상태에서 초점을 둔 독립변수에 대해서만 종속변수의 변화를 살펴보는 것이고
음함수 미분은 n개의 독립변수와 1개의 종속변수에 대해 편미분과 마찬가지로 접근하되 y=f(x1, x2, ..., xn) 이런 식으로 표현된 것이 아닌 F(x1, x2, ..., xn, y)=0 이런 방정식의 꼴로 주어진 식에서 적용하는 미분법이라고 이해하시면 되겠습니다.
다시 말해 편미분은 다변수함수에서의 도함수를 구하기 위해 우리가 배우는 개념이고, 음함수 미분법은 어떤 함수를 정의할 때 그것이 종속변수=(독립변수에 관한 식) 꼴로 정리할 수 없고 (독립변수와 종속변수에 관한 식)=0 꼴로 정리할 수 있을 때 주어진 방정식의 형태에서 바로 도함수를 구하기 위해 우리가 배우는 개념입니다.
그래서 정확히는 음함수(implicit function)로 정의된 함수에서 변수들을 바라볼 때 '어떤 변수가 독립변수가 되고 어떤 변수가 종속 변수가 되어 대응 관계를 이루는지'를 살펴볼 필요가 있습니다. 이와 관련해서 어떨 때 확실하게 음함수라고 말할 수 있는지를 알려주는 음함수 정리(implicit theorem)가 존재하는데 수능 수학에서는 어차피 1변수 함수만을 다루고 음함수 미분법을 적용하는 문항에서는 직관적으로 어떤 변수가 다른 독립 변수에 대한 종속 변수가 됨을 파악할 수 있게 상황을 주거나 'k를 g(t)라고 할 때'와 같은 발문으로 어떤 변수가 다른 독립 변수에 대한 종속 변수가 됨을 언급해주기 때문에
간단하게 '모든 변수를 변수로 인정해주고 미분한다'라고 말씀하셔도 괜찮을 것 같습니다. 참고로 미적분에서 학습하는 합성함수 미분법, 매개변수 미분법, 역함수 미분법, 음함수 미분법 등은 결국 연쇄 법칙(chain rule)이라는 이름 아래에 모두 본질적으로 같은 미분법을 의미하기 때문에 합성함수 미분법 문항을 음함수 미분법으로, 음함수 미분법 문항을 합성함수 미분법으로 접근해보시는 훈련을 하면 보다 본질적인 이해도를 높이는 데에 도움이 될 듯요!
![](https://s3.orbi.kr/data/emoticons/orcon/012.png)
헉 엄청 자세히 설명해주셔서 감사합니당이것이 수학...
본문에서 다변수함수의 예시로 든 생산함수도 L, K, H, N이라는 변수들에 k배 했을 때 종속변수인 Y도 k배가 되면 'constant returns to scale'이라는 표현을 경제학에서 쓰는데
다변수함수에서 독립변수들에 k배 했을 때 종속변수가 k^r배 되면 그 다변수함수를 'r차 동차함수'라고 부르더라구요! 이처럼 수능을 졸업하는 순간 수학엔 참 다양한 것들이 있음을.. 느낄 수 있는 것 같습니다. 저는 개인적으로 되게 재밌게 공부했어요 ㅎㅎ