수2 자작 맞추면 3천덕코
게시글 주소: https://ui.orbi.kr/00062039960
킬러는 아닙니다. 할 수 있어요.
선착순.
0 XDK (+1,100)
-
1,000
-
100
-
자기보다 어린 선배 볼때 기분이상하다는데
-
기생집 0
실전개념은 다른 쌤 듣고잇는데 기출은 기생집이 듣고싶어서 들을라는데 ㄱㅊ을까요
-
숨마쿰라우데 2
숨마쿰라우데 수학 해보신분 있으신가요?? 이걸로 개념 괜춘할까요?? 너무 지엽적이라는 분들도있어서…
-
ㄷㄷ
-
막상 버리지 못한 서울대와 한의대에 대한 열망감 삼반수를 해보지 못했던 것에 대한...
-
아하..
-
으흐흐
-
확실히 4
탈릅시즌이긴 하네…오늘 몇명이나 간거지
-
그럼 내 인생을 비로잡을 수 있을 텐데
-
옯스타 홍보하겟습니다 13
nynykyo_93 닉 모르겟으면 안받습니다
-
어려울까요..... 이미 상향이라 마음놓고있긴한데ㅋㅋㅠㅠ
-
호무라가 회귀해서 마법소녀 소원빌때 마도카가 절대 마법소녀와 마녀가 되지 않게...
-
콜로세움 엌ㅋㅋ
-
이왕 자는김에 6
다들 숙면하삼중간에 깨지말고
-
여르비들아 2
나랑 맞팔할 존예여르비 어디 없남
-
메디컬 전망 6
의치한약수 중에서 전망이 어디가 젤 좋다고 보심? 커뮤들은 다 망했다고 하고...
-
현대인들은 인간과 인간의 실질적 소통 가능성에 진지하게 의문을 품는다. 주관적으로는...
-
역시 난 한국인이네
-
제가 작년에 여기서 본 말인데 개인적으로 와닿았어요
-
자러 갈게 4
다들 좋은 꿈 꿔! 。◕‿◕。
-
하지만 난 내실을 쌓앗어
-
잘자셈 5
다들 자는갑네
-
내가 인증보고싶은사람 13
옯창남르비랑 존예여르비
-
난 붕신맨이야 16
날 그렇게 불러다오..
-
탈릅합니다 2
오르비에 정말 좋은 분들도 많고… 덕분에 고3 시절 재밌게 보냈습니다. 그렇지만...
-
확통vs기하 0
기하: 공도, 벡터 4점 못건드림 저거 제외하고 나머지 기하문제는 풀림 확통: 아직...
-
사람 살리는거에요
-
엽사 ㅇㅈ 3
진심으로 물기.
-
잠이 안 와… 8
-
메인글 말대로라면 힘들려나 흠…
-
해주십시오… 아님 슬더스를 하던가
-
04오부이들 5
-
ㅇㅈ욕구 참는 법 24
친한 오뿌이한테 디엠으로 보내고 ㄹㅈㄷㄱㅁ 소리를 하게 한다 그거로 만족하기
-
다못생기고찐따인줄알았는데인증하는거보면전혀아님
-
군필 7수인데 내년에 의대가도 그렇게 늦은건 아니네 4
사실 2년전에 입학했고 2년휴학했다고 치면 그렇게 늦은것도 아닌듯
-
알파피메일들 많아서 재밌었음ㅇㅇ 담에도 ㅇㅈ많이해줘 언니들 나도 언젠간 할게~~
-
나도 막 무물 13
받고 공부하러가야젱
-
ㅇㅈㅎㅈㅅㅇ 3
못보긴함 지금
-
짧게 질받 10
아무거나 다 던져
-
무물보 받아요 8
없으면 글삭
-
안녕히 주무세요 1
일찍 물러가겠습니다
-
왜틀린거지 9
나의 풀이 완전 문제가 업는데 업엇을텐데..
-
5억있는 의사 vs 50억 있는 잘되는 동네학원 원장 8
어떻게보시나욤
-
이제자야짐
-
雨男 4
明日に希望を託すのはやめた
-
여친토끼 어딨나
분모 괄호가 한개 없는데 어디에 있는 건가요?.
분모 괄호가 무엇을 말씀하시는 건가요? x가 a가 아닐 때의 g(x)를 말하시는 건가요?
아 분자요
아 미처 확인하지 못했었네요 알려주셔서 정말 감사합니다!
수정했습니다. 다시 한 번 감사드립니다!
934 16? 잘모르겠넹
정답!
어떻게 푸셨나요? 20~21번 정도의 난이도를 예쌍하고 만들었는데 적당한가요?
풀이도 올려주시나요 ㅋㅋㅋ ㅠ
잠시만 기다려주세요!
3000덕코 보내드렸습니다. 확인해주세요!
땡
g(x)가 연속함수라는 조건은 어디에도 없습니다. 이차함수와 직선의 관계에 따라 케이스를 나누고 잘 관찰하는 것이 관건인 문제입니다. 이해가 안 되는 지점이 있다면 따로 물어봐주세요!
오 이해했어요!! 일단 제가 x축으로 -a 만큼 옮긴거는 함수관계는 같게 나오니까 괜찮은데, 멋대로 연속조건 써서 (x=0제외 기함수인데 그냥 기함수로 판단해서 0,0지나는 거로 판단하는 실수를 했네요) CASE 분류를 너무 못했네요! 풀이 감사합니다 !! 그리고 집합표현도 다시 익히는 기회가 되었네요 감사합니다,!!
정의역/치역/공역 표현은 언제든 나올 수 있으니 보면 무슨 의미인지 알 수 있게만 알아두시면 됩니다! 문제에 관심 가져주셔서 감사합니다!
이게 뭔말인지 모르겠어서 수학 하 집합 펴봐야겠네요
h(m)의 모든 함숫값의 집합을 치역이라 합니다. k는 h(m)의 함숫값이 될 수 있는 수들을 모두 더한 값이 되는 거죠.
조금 더 읽기 쉽게 h(m) 앞에 '함수'라는 표현을 추가했습니다.
생각해보니까 수2 이용하는 단계는 하나도 없네요... 고1수학으로도 충분히 풀 수 있을듯.