[Team PPL 칼럼 71호] ‘경우의 수’ 단원을 얕보지 말자
게시글 주소: https://ui.orbi.kr/00062006126
우리는 중학교, 고등학교에서 적어도 두 번, 많으면 세 번까지 경우의 수를 세는 단원을 접하게 됩니다. 중학교 2학년과 고1의 수학 (하)에서 한번씩, 또 선택과목 확률과 통계에서까지 말이죠. 그런데 이때 배운 개념과 사고과정들은 실제로는 해당 단원이 아닌 곳에서도 빈번하게 쓰이고 있습니다. 합의 법칙과 곱의 법칙에 대한 내용을 정확히 이해하고, 다른 단원의 문제에 사용된 것을 통해 해당 개념의 중요성을 다시 일깨워 보는 시간을 갖도록 합시다.
# 왜 ‘더하기’인가요?
합의 법칙의 내용은 다음과 같습니다.
두 사건 A와 B가 동시에 일어나지 않을 때, 사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면
(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n
이다.
단순한 내용 속에서 우리가 이해해야 하는 본질은 다음과 같습니다:
두 가지 상황이 ‘동시에 일어나지 않으면’ 각각의 경우를 분리해서 구해야 한다.
보통 위의 내용을 이해하는데 어려움을 겪는 경우는 그렇게 많지 않습니다. 그런데, 문제에서 사용될 때는 이야기가 조금 달라집니다. 아래의 문제를 보시고, 이어서 설명드리겠습니다.
예시 1. 한 개의 주사위를 던질 때 나오는 눈의 수가 2 이하 또는 5 이상인 경우의 수를 구하시오.
쉽죠, 2 이하인 눈은 1, 2의 2개, 5 이상인 눈은 5, 6의 2개이므로 합쳐서 4입니다.
두 번째 예시는 어떨까요?
예시 2. 2023학년도 6월 모의평가 (공통) 12번
해당 문제는
조건 (가)에서 와 의 부호가 반대이므로 , 이어야 하는 조건을 이끌어낸 뒤,
조건 (나)에서 의 부호가 어떤지에 따라 경우를 나누어 구하는 문제입니다.
상황에 따라 계산할 식이 달라지기 때문에, 경우를 나누어 따로 구해야 할 필요성을 인지하지 않으면 문제를 제대로 풀 수 없습니다. 위의 예시 1과 같은 문제를 풀어오면서, 예시 2와 같은 문제를 풀 때 상황을 나눠서 푸는 것에 익숙해져 있다면 절댓값 같은 상황에 더 유연히 대처할 수 있지 않을까요.
# 동시에 안일어났는데요? ‘곱의 법칙’
곱의 법칙의 내용은 다음과 같습니다.
사건 A가 일어나는 경우의 수가 m, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면
(두 사건 A와 B가 동시에 일어나는 경우의 수)=m n
이다.
여기서는 ‘동시에 일어난다’ 라는 표현에 주목할 필요가 있겠습니다.
보통 일반적으로 이야기하는 동시라는 표현은 같은 시점에 발생하는 두 가지 일을 이야기 하지만, 여기에서 동시라는 표현은 이렇게 이해해야 합니다.
두 사건 A, B가 ‘같은 시간선상’에서 발생한다.
즉, 주사위 두 개를 동시에 던지던, 1시간의 간격을 두고 던지던, 같은 시간선상에서 두 주사위가 동시에 던져진 결과물이기 때문에, 동일한 상황으로 취급합니다.
따라서 이렇게도 해석 가능합니다.
어떤 시행의 서로 다른 m가지 결과 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면,
총 경우의 수는 n을 m번 더한 것, 즉 n m이다.
우리가 곱하기를 처음 배울 때 출발한 개념과 비슷하게 이해할 수 있겠습니다. 위와 같이 이해하면, 한가지의 케이스 분리를 한 뒤 그 안에서 일어나는 또다른 케이스 분리에 대해서도 보다 쉽게 접근할 수 있을 거라 생각합니다.
뭐 가끔 이런 문제처럼 출제진까지도 생각 못한 케이스 분리가 존재할 때도 있긴 하지만요...ㅎ
예시 3. 2019년 6월 고2 모의고사 (가형) 30번
# 경우의 수를 대하는 자세는 문제풀이의 필수요건이다.
제일 단순한 실생활의 예시를 통해 수학문제를 풀 때 필요한 논리적 사고력을 키울 수 있는 단원은 분명 이 단원입니다. 실제로 출제되는 문제들 또한 미지수와 복잡한 수식들보다 일상생활에서 친숙히 볼수 있는 소재들로 구성된 문제의 비율이 가장 높기도 하고요. 해당 단원의 학습을 소홀히 하지 않고 어렸을 때 퍼즐을 풀던 감성처럼 오랫동안 고민하면서 공부하면 복잡한 문제에서도 당황하지 않고 상황을 분석할 수 있는 힘을 기를수 있을 것이라 생각합니다.
예비 고1 여러분들, 또 미적 선택을 고민중인 분들도 해당 단원만큼은 꼭 공들여 공부했음 좋겠다는 바람입니다!
칼럼 제작 | Team 수하기
제작 일자 | 2023.02.12
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
숨마쿰라우데 2
숨마쿰라우데 수학 해보신분 있으신가요?? 이걸로 개념 괜춘할까요?? 너무 지엽적이라는 분들도있어서…
-
ㄷㄷ
-
막상 버리지 못한 서울대와 한의대에 대한 열망감 삼반수를 해보지 못했던 것에 대한...
-
아하..
-
으흐흐
-
확실히 4
탈릅시즌이긴 하네…오늘 몇명이나 간거지
-
그럼 내 인생을 비로잡을 수 있을 텐데
-
옯스타 홍보하겟습니다 13
nynykyo_93 닉 모르겟으면 안받습니다
-
어려울까요..... 이미 상향이라 마음놓고있긴한데ㅋㅋㅠㅠ
-
호무라가 회귀해서 마법소녀 소원빌때 마도카가 절대 마법소녀와 마녀가 되지 않게...
-
콜로세움 엌ㅋㅋ
-
이왕 자는김에 6
다들 숙면하삼중간에 깨지말고
-
여르비들아 2
나랑 맞팔할 존예여르비 어디 없남
-
메디컬 전망 6
의치한약수 중에서 전망이 어디가 젤 좋다고 보심? 커뮤들은 다 망했다고 하고...
-
현대인들은 인간과 인간의 실질적 소통 가능성에 진지하게 의문을 품는다. 주관적으로는...
-
역시 난 한국인이네
-
제가 작년에 여기서 본 말인데 개인적으로 와닿았어요
-
자러 갈게 4
다들 좋은 꿈 꿔! 。◕‿◕。
-
하지만 난 내실을 쌓앗어
-
잘자셈 5
다들 자는갑네
-
내가 인증보고싶은사람 13
옯창남르비랑 존예여르비
-
난 붕신맨이야 16
날 그렇게 불러다오..
-
탈릅합니다 2
오르비에 정말 좋은 분들도 많고… 덕분에 고3 시절 재밌게 보냈습니다. 그렇지만...
-
확통vs기하 0
기하: 공도, 벡터 4점 못건드림 저거 제외하고 나머지 기하문제는 풀림 확통: 아직...
-
사람 살리는거에요
-
엽사 ㅇㅈ 3
진심으로 물기.
-
잠이 안 와… 8
-
메인글 말대로라면 힘들려나 흠…
-
해주십시오… 아님 슬더스를 하던가
-
04오부이들 5
-
ㅇㅈ욕구 참는 법 24
친한 오뿌이한테 디엠으로 보내고 ㄹㅈㄷㄱㅁ 소리를 하게 한다 그거로 만족하기
-
다못생기고찐따인줄알았는데인증하는거보면전혀아님
-
군필 7수인데 내년에 의대가도 그렇게 늦은건 아니네 4
사실 2년전에 입학했고 2년휴학했다고 치면 그렇게 늦은것도 아닌듯
-
알파피메일들 많아서 재밌었음ㅇㅇ 담에도 ㅇㅈ많이해줘 언니들 나도 언젠간 할게~~
-
나도 막 무물 13
받고 공부하러가야젱
-
ㅇㅈㅎㅈㅅㅇ 3
못보긴함 지금
-
짧게 질받 10
아무거나 다 던져
-
무물보 받아요 8
없으면 글삭
-
안녕히 주무세요 1
일찍 물러가겠습니다
-
왜틀린거지 9
나의 풀이 완전 문제가 업는데 업엇을텐데..
-
5억있는 의사 vs 50억 있는 잘되는 동네학원 원장 8
어떻게보시나욤
-
이제자야짐
-
雨男 4
明日に希望を託すのはやめた
-
여친토끼 어딨나
-
형들 잔칫날 백분위와 표점을 대령해라
-
머리가 아퍼 5
나의 푸리가 왜..
-
2~3월 수분감 4~5월 뉴런 이런식으로 할 생각이었는데 병행하는편이 낫나요 ?...
시러시러 경우의수 시러요 마니시러