RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
게시글 주소: https://ui.orbi.kr/00061783789
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
1. 다항함수의 도출
수학Ⅱ 단원 문제들은 다항함수 또는 다항함수를 변형한 함수에 관한 문제를 출제합니다.
다항함수를 변형한 함수 또한 표면적으로는 여러 형태를 취하고 있지만
근본적으로 보았을 때 이들은 모두 구간별로 정의된 다항함수이며,
이는 결국 여러 다항함수를 이어붙인 것에 불과합니다.
결국, 수학Ⅱ의 문제들은 다항함수에 대한 문제이며,
다항함수의 미지수를 결정하는 문제라고 할 수 있다는 것이죠.
이러한 다항함수에는 0차함수(상수함수), 1차함수, ... n차함수(n은 음이 아닌 정수)가 있으며
n차함수에는 n차항, (n-1)차항, ..., 1차항, 상수항, 총 (n+1)개의 항이 존재합니다.
따라서 n차함수의 식을 도출하기 위해서는
(n+1)개의 항의 계수를 결정하기 위한 (n+1)개의 독립적인 정보가 필요하며,
이 (n+1)개의 정보를 연립하면 모든 항의 계수를 결정할 수 있습니다.
그런데, 만약 주어진 정보가 단순히 마구잡이로 주어진 것이 아니라
일련의 패턴을 가지고 있을 경우,
해당 정보의 패턴을 활용하여 원하는 함수를
훨씬 간단하게 도출해낼 수 있습니다.
그리고 수능에서 출제진들이 평가하고자 하는 것이
단순히 연립방정식 여러 개를 만들어서
이를 빠르게 계산하는 노가다 능력이 아니라
자료를 해석하고 원하는 솔루션을 도출해내는 능력이기 때문에,
점수가 높은 문제, 고난도 문제일수록
단순히 정보를 나열하여 연립하는 것이 아니라
정보에 존재하는 패턴을 파악하는 것이 중요해집니다.
그렇다면, 수능 문제에서는 다항함수에 대한 어떤 패턴이 나올까요?
------------------------------------------------------------------------
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
다항함수의 도출을 위한 정보로 제공되는 패턴 중 가장 기본적인 것은
단연 해당 다항함수의 인수에 관한 정보입니다.
다항함수의 인수에 관한 정보가 주어진 경우,
해당 다항함수를 인수분해할 수 있기에
나머지 부분을 훨씬 쉽게 도출해낼 수 있지요.
다항함수의 인수와 관련된 정보는
다음 ①~③의 형태로 제공됩니다.
① 다항함수 f(x)에 대하여 f(a)=0인 경우
다항함수 f(x)에 대하여 f(a)=0인 경우에는
다항함수 f(x)가 (x-a)를 인수로 가지고 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=0이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 0
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 다음 문제를 푸는 방법은 다음과 같습니다.
먼저 이차함수 f(x) = ax²+bx+c 에 대해 각 값을 대입하면
f(1) = 0 이므로 a+b+c = 0,
f(5) = 0 이므로 25a+5b+c = 0
f(3) = -8 이므로 9a+3b+c = -8
이므로 첫 번째 식과 두 번째 식에서
a+b+c = 25a+5b+c , 24a = -4b, b=-6a,
a+b+c = a-6a+c = c-5a = 0 , c=5a
세 번째 식에서
9a+3b+c = 9a-18a+5a= -4a = -8,
a = 2, b = -12, c=10
f(x) = 2x²-12x+10 , f(7) = 98-84+10 = 24 (Q.E.D.)
그런데, f(1) = 0, f(5) = 0이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
f(1) = 0 이라는 정보에서 f(x)가 (x-1)을 인수로 갖는다는 것을,
f(5) = 0 이라는 정보에서 f(x)가 (x-5)을 인수로 갖는다는 것을 이해하고 있으면
위의 풀이가 다음과 같이 달라지죠.
f(1) = f(5) = 0이므로 f(x) = ax²+bx+c = a(x-1)(x-5)
f(3) = -4a = -8 이므로 a=2
f(x) = 2(x-1)(x-5), f(7) = 2×6×2 = 24 (Q.E.D.)
딱 봐도, 풀이가 훨씬 간단해진다는 것을 알 수 있겠습니다.
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우에는
다항함수 f(x)가 (x-a)²를 인수로 가지고 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=0, f’(3)=0이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , f’(x) = 3ax²+2bx+c,
27a+9b+3c+d = 0 , 27a+6b+c = 0
으로 정리하는 대신
f(x) = (x-3)²(px+q)
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
역시 해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x)를 f(x) = x³+ax²+bx+c , f’(x) = 3x²+2ax+b 로 정리하고
f’(5) = 0 이므로 75+10a+b = 0, 10a+b = -75,
f(5) = 0 이므로 125+25a+5b+c = 0, 25a+5b+c = -125
f(1) = -16 이므로 1+a+b+c = -16, a+b+c = -17
이므로 두 번째 식과 세 번째 식에서
(25a+5b+c)-(a+b+c) = 24a+4b = (-125)-(-17) = -108
6a+b = -27
첫 번째 식에서
10a+b = 4a + (6a+b) = 4a-27 = -75, 4a = -48, a=-12,
6a+b = b-72 = -27, b = 45,
a+b+c = c+45-12 = c+33 = -17, c=-50
f(x) = x³-12x²+45x-50 , f(3) = 27-108+135-50 = 4 (Q.E.D.)
와 같은 방식으로 구해야 합니다.
그런데, f(5) = 0, f’(5) = 0이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
f’(5) = f(5) = 0 이라는 정보에서 f(x)가 (x-5)²을 인수로 갖는다는 것을 이해하고 있으면
위의 풀이가 다음과 같이 달라지죠.
f(5) = f’(5) = 0이므로 f(x) = x³+ax²+bx+c = (x-5)²(x-a)
f(1) = 16(1-a) = -16 이므로 a=2
f(x) = (x-5)²(x-2), f(3) = (-2)²×1 = 4 (Q.E.D.)
역시 딱 봐도, 풀이가 훨씬 간단해진다는 것을 알 수 있겠습니다.
한 문제 더 풀어볼까요.
위 문제의 (가) 조건은 다항함수 f(x)가 최고차항의 계수가 2인 이차함수임을 뜻하며,
(나) 조건은 분모가 0으로 수렴할 때 분수가 발산하지 않으므로
분자 또한 0으로 수렴한다는 것, 즉 x→1일 때 f(x)→0임을 의미하고,
f(x)가 다항함수이므로 이는 즉 f(1)=0임을 의미합니다.
따라서 f(x) = 2(x-1)(x-a)로 정리됩니다.
이후 (나)조건에 이를 적용하면 (x-1)이 약분되어
2×(1-a) = 3 , a = -0.5 가 되고
f(x) = 2(x-1)(x+0.5)
f(2) = 2×1×2.5 = 5 (Q.E.D.)
와 같이 풀립니다.
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
다항함수 f(x)가 (x-a)를 n개 인수로 가지고 있을 경우,
x=a를 기준으로 f(x)의 부호가 바뀌면 n은 홀수,
f(x)의 부호가 바뀌지 않으면 n은 짝수입니다.
위 ①~③ 정도 정보의 활용은 많은 분들이 하고 계실 거라고 생각합니다.
제가 고등학교 1학년 때 3~40점 맞던 시기, 아무것도 모르던 시기에는
저렇게 정보를 제대로 활용하지 않은 채로 막무가내로 연립방정식만 세웠었고,
그래서 계산실수도 않았었던 거 같네요.
아마 수학 5등급 이상의 점수를 맞고 계시는 분들은
이미 이 정도의 정보 활용은 가능하실 거라고 생각합니다.
그러나, 이후에 나오는 내용까지 완벽하게 활용하고 계신 분들은
그렇게 많지는 않을 것으로 예상됩니다.
이후의 내용은
“다항함수 f(x), g(x)에 대하여 ‘h(x)=f(x)-g(x)’는 다항함수다”
라는 참인 명제를 이용하여 적용됩니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (2/3) >
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
휴지로 코 막고 마스크 쓸까 약 먹을까
-
문제에ㅡ그냥 발광다이오드라고 나오면 방향 따져야 하죠?
-
올해 게임이론 지문 나온다면 보기문제는 계산을 물어보겠지? 0
게임이론 지문이 나온다면 혼합 전략내시균형 반드시 나올텐데 그럼 보기문제는 반드시...
-
사랑했지만 0
그대를 사랑했지만~
-
문잘싶광울 0
전직 문학소녀였는데..
-
화잘싶광울 0
하학 이번엔 1등급좀..
-
수잘싶광울 3
수학 잘하고 싶다
-
국잘싶광울 4
요새느끼는거지만 ㄹㅇ 존나못하는듯
-
얼마나 추우려나 모르겠네요 2025학년도 수능 입시 성공 대박 대학 합격 옷 날씨...
-
음? 3
알림이 자는사이에 200개가 넘게왔네 뭔일잇엇나..
-
이거 맞음? 아니겠지..? 알려주세요ㅠㅠ
-
오밐추 6
굿모닝
-
no pain 2
No gain
-
독서 7 문학 18 22 33 언매 40 총 5문제 틀림 독서는 쉽게 나온듯 문학은...
-
저...격해요 6
-
이제 와서는 국어 탐구 빼고는 해도 위로는 안바뀜 근데 안하면 아래로는 바뀜 ㅇㅇ
-
재수하면서 정말 힘들었고 많은 일들이 있었는데 이제 독서실에서 인강 보면서 큭큭댈...
-
두명이 탈릅했나 5
팔로워 팔로잉 둘다 2명씩 줄었네
-
이번주 학원에서 더프 보는 거 얼마 전에 신청했는데 막상 이번주 되니까 실모 많이...
-
지듣노 1
Jazzyfact - Let's Love
-
26수능 대비 메가패스 양도해요 댓글 달아주시거나 쪽지주세요
-
계속 미루다가 결국엔 늦어
-
지2황들 컴 0
남은 10일간 폴라N제/올해 실모/실문풀 (하루에 지2 4시간박음) 하면...
-
얼버기 6
피곤해디짐
-
일단 15 22 28 30 버린 뒤, 나머지 다 풀고 시간 남으면 건드린다는...
-
걍 수험표 뒤에 벅벅 쓰는 거 되죠? 이건 감독관한테 말 안하고 해도 되잖어
-
참고로 7시 50분까지 가야함 궁금궁금
-
사문 도표 0
2개월 전에 mskill 완강하고 복습과제집은 아직 못풀었는데요.. 도표만 보면...
-
ㅈㄱㄴ
-
어떤 의대생은 내신 전교1등까지 했으면서 노베에서 1년만에 의대갔다고 하질 않나...
-
일찍기상 10
그거 어떻게 하는건데...전 이제 집 나가는중 다른 독서실 다니는 친구랑...
-
그냥 수험표 뒤에 붙여서 책상 위에 두고 omr 마킹 끝난 다음에 죽죽 따라 적으면 되나요??
-
작년처럼 비오지 말아주세요….. 제바류류류ㅜㅜㅠㅜㅠㅠㅠ
-
1. 수능 3주 전임에도 운동장 공사로 학교 전체가 진동함 2. 심지어 공사를...
-
어릴땐 1
눈물이 진짜 많았는데 이젠 진짜 인생이 망해서 그런가 눈물도 안나옴
-
올 5,6,7등급에서 평균 3까지 올린거면 많이 오른건가 8
1년의 결관디... 오르비에서 1,2까지 수직상승한 사람들을 봐서 별로 안오른 기분이야
-
학교 정보시간에 몰래하기
-
수시러라 최저만 맞추면 되는데 국어는 2~3 영어는 1 수학은 3~4 나오는데 괜히...
-
수학은 이제와서 실모 외에는 더 한다고 점수 바꾸기 글렀고 실수만 좀 잡아야할듯...
-
지금까지 했던 생글생감, 기테마 복습하는게 더 ㄱㅊ겠죠
-
지금 감기라도 걸리면 ..
-
공부 광기 0
이거 아무나하는거 아니다. 나도 국어 실모 볼때마다 흥분해보려고 했는데 이거 쉽지 않다
-
고객센터에 문의하면 다시 살 수 있나요?
-
오르비식 말고 수능 표본으로 미적 1컷 몇 예상하시나용
-
왜 자꾸 0
8/3+8/3을 8이라고 하지 짜증나네
-
최저만 맞추게 해다오...
-
찾아보니까 시대인재가이드는 있던데 강남대성이랑 뭐 다른것들 모아서 재수가이드 써주실분없나요,.,,
-
격자점 세기,무등비,삼도극,ㄱㄴㄷ 등 다 부활해서 통수 쳤으면 좋겠당 켈켈켈