2014 7월 모의고사 수학B 30번 한완수를 이용한 풀이
게시글 주소: https://ui.orbi.kr/0004689030
2014 7모 수학B 30번 풀이.hwp
2014 7모 수학B 30번 풀이.pdf
한글 파일, pdf 파일 모두 준비해놨으니 필요하신 분들은 가져다 쓰세용 ^^
과외 학생에게 쓸 자료인데, 여기다가도 한번 뿌려봅니다 ㅎㅎ
잘 보셨다면, 좋아요 눌러주시면 정~~말로 감사하겠습니다. 보다 많은 사람이 봐야하니까요 ^^
p.s 들리는 썰에 따르면 평행한 면을 바로 찾거나, 법선벡터를 이용해서 풀어낸 경우도 봤습니다.
이런 경우의 풀이도 한번 생각해보시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그레이엄 하먼은 아직 살아있는데 문항 출제 잘못하면 평가원 또 사과해야하는거 아닌지...
-
꽤나 오래된 역사를 지닌 곳
-
동대 입학처 오늘 일 함?아는사람
-
동아의 카관의 let’s go
-
국시 자격 여부는 교육부 소관이라고 그럼 불인증먹어도 국시칠수있을듯..? 교육부...
-
잇올도착 1
투데이스타트
-
경지를 향한 단련이 필요하다
-
ㄹㅇ
-
오늘 밤에 하면 마감되어있을까요?ㅠ
-
손 핏줄이 갑자기 무슨 헬창 급으로 올라오는데 이거 왜이럼
-
10만원 넘지 않고 스테이크 맛있는 뷔페로요
-
나는 왤케 4
아파트 외벽에 붙어서 도망치는 꿈을 많이 꾸냐 전생에 도마뱀이었나
-
개빻았는데 빨리자서 다행이다
-
수분감 수1특 5
솔직히 틀딱기출문제 거른거 많음...
-
영어는 그래도 약간? 재밌으니까
-
춤추는 너의 모습은
-
비도 조금씩 오는데 달리니까 시원하고 좋아요
-
희망을 가chill guy
-
많을라나 막상 학교첫날갓는데 마음에들면어카지
-
술이 아직도 안 깨서 어지러운데 ㅅㅂ 인생
-
인강 한번 듣고 그 내용을 어케 다 기억하고 적어내림? 이게 될 정도면 애초에...
-
화작 교재 추천 0
화작 기출교재 어떤게 좋을까요? 강의는 안 들을 예정인데 뭐가 가장 괜찮을지 추천좀 해주세요
-
파송송 계란탁
-
자야지 0
-
얘 태어날때 데뷔했는데
-
집가는길 1
으어
-
공공인재는 최초합해서 4년 반액장학이고 경영은 추합 기다리고있는데 장학금...
-
오르비는 망했어 2
-
잠버릇 고약하네..
-
으으 2
피곤피곤
-
단국약 예비 31번, 전북약 실공10등 둘중 하나라도 될 가능성 있을까요?
-
주가조작으로 잡혀가셨다네요 조의금은 여기로
-
야추 ㅇㅈ 4
'옯붕아 이리와서 앉아봐라.'
-
사랑해요
-
진짜 ㅇㅈ마렵네 2
오랜된 생각이다
-
동아리 195화 3
이게 완결이고 뒤에 화는 안 볼거임뇨
-
기차지나간당 6
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
명절이 싫다 0
싫어
-
얼버기 1
ㄹㅈㄷ 갓생이네요
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
-
그래 뭐... 짜피 최초합은 물건너간지 오래인데
-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 1
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
-
살면서 케이크 딱 한번 먹어봤는데(어릴때 알러지때매 안먹음) 커서 알러지는 나아져서...
-
둘이똑같음
이 문제를 정사영해서 이면각구하셨다는 말씀인가요 ??
저는 어차피 이면각을 구하는 거니까 원기둥에 생긴 면을
정육면체로 끌고 내려와서 매치시키니까 정사면체 이면각과 똑같길래 정말
1분컷으로 풀었었는데;;
그렇게 푸는 것이 가장 빠르다는 것은 인정합니다. 제 풀이법은 일종의 대체재 성격을 띄는 풀이입니다. 시험장에서 평행한 면을 보지 못했을 때를 대비한 풀이라고나 할까요 ㅎㅎㅎ 만약 시험장에서 교육청의 풀이법이 안보였다면 어떻게 하면 좋을까라는 발상에서 만든겁니다.
아... 공간도형 문제는 풀이법이 다양하니 님의 풀이도 공부해봄이 좋을듯싶네요 감사합니다ㅋㅋ^&^
단면화 과정이 전혀 이해안되네요 저렇게 단면화 된다는 보장이 있나요? 코멘트없이 쓸 정도로 전혀 자명해보이지는 않네요
평면을 하나의 직선으로 보는 것의 단면화의 핵심입니다. 세개의 평면 중 어느 하나라도 평행한 평면이 없고 공통 교점을 가지는 평면이 없다는 것은 그림으로보면 너무 자명한 사실이구요 그래서 저렇게 삼각형 모양으로 단면화해도 문제없습니다
아무튼 좋은 의견 감사드립니다 ^^
저두 ㅎㅎ 그냥 길이 적어보니까 맞는거같아서
좌표풀이 만사형통
법선벡터의 각!
닥 외적
외적 몰라요ㅠㅠ
님처럼 수학 잘하면 수학 엄청 재밌을 듯 ㅜ
문과라서 무승 말인 지 하나도 모르지만
좋아요 누르고 가요!ㅋㅋㅋ
이분참 재미지단말이야 ㅎ
이렇게 단면화 시키려면 먼저 세 평면이 공통교점을 가지지 않는다는 것과 한 평면에서의 법선벡터가 나머지 두 평면의 교선에 수직한다는 점을 먼저 증명시켜야 단면화논리가 성립함.(작년수능 29번문제하고 같은 논리) 이거 먼저 언급하고 적용하시면 완전한풀이가 될 듯
좋은 의견 감사합니다 ^^
위위위에 댓글에 이미 단면화 논리 알고 계셨군요 ㅎㅎ
일단 댓글 써놓고 단면화 되는지 확인해 보니까 이분말대로 공통교점있고 법선벡터가 나머지평면 교선에 수직하지도 않네요 이거 단면화 논리 오류인듯
공통교점은 점 D라고 나오는걸 봐서는......
시간이 많이 남아거 영혼없이 평방 구했네요 ㅋㅋ
단면화를 하려면 두 면의 교선이 점으로 보이는 시점에서 두 면을 직선처럼 보는건데
저 그림대로라면
면 DEG와 밑면과의 교선,
면 PQR과 밑면과의 교선,
면 DEG과 면 PQR의 교선
이 세개의 교선이 평행해서 한점으로 보이는 시점이 있다는 건데 실제로는 교선들이 평행하지 않으니 문제풀이에 오류가 있다고 생각합니다.
걍좌표로풀고 외적써ㄷ
넘 오래걸려요 ㅠㅠ
외적 굳ㅋ 2분컷
정말 문과와 이과는 종이 1억장 차이다
그럼 이 문제를 단면화로 푸는건 논리적 비약이 있다는건가요?? 어떻게 답은 맞는건지요?
저는 정사영을 2번하는 방식으로 풀었는데 어떻게 생각하시나요?
그냥 넓이에다가 코사인세타1과 코사인세타2를 곱해서 1/3값을 곱했는데 답은 맞았거든요
저 교육청풀이가 cp를 이용하여 푼거아닌가요
저도 저렇게풀엇는데..
제가 머리가 나빠서 논리적으로 맞지않다고 생각하는건진 모르겠는데, 답만 옳게나오는 짜맞추기풀이아닌가요?
저거 단면화과정 없어도 괜찮지않나요? 어째선지 저방식하고 비슷하게 그냥 cos세타1 cos세타2 구해서 두개 덧셈공식해서 구했었는데...
그냥 잘못 푼 거 같기도 해요. ㅠㅠ
코사인세타1오타잇으세요 DI/IH ---> IH/DI
네 확인했어요 ㅠㅠ 죄송합니다