[박수칠] 역함수의 미분법 이해하기
게시글 주소: https://ui.orbi.kr/0004590637
수학영역 A형에 비해 B형에서는 다양한 미분법/적분법을 배우게 됩니다.
그 중에 살~짝 어렵고 헷갈리는 것이 '역함수의 미분법'인데요,
이 글을 통해 간단명료하게 설명해드리겠습니다.
1.일단 역함수의 미분법은
(1) x=f(y) 꼴의 함수를 미분하기 위한 것입니다.
(2) 그래서 역함수의 도함수를 구하는데 이용되죠.
2.역함수의 미분법에 관련된 공식은 다음 두 가지가 있습니다.
각각의 증명은 다음과 같습니다.
(1) 의 증명
(2)의 증명
3.그럼 공식 2-(1)을 이용해서 도함수를 계산해봅시다.
(1) 주어진 함수를 x=f(y)의 꼴로 표현하기 위해 양변을 n제곱합니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
(4) 따라서 주어진 함수의 도함수는 다음과 같습니다.
(1) 역함수를 구하기 위해 x, y의 위치를 바꿉니다.
y=f(x) 꼴로 정리하지 않아도 위 식은 이미 역함수입니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
이 식이 바로 역함수의 도함수입니다.
역함수 를 y=f(x)의 꼴로 표현하기 어렵기 때문에
위의 도함수를 굳이 x에 대한 식으로 나타낼 필요는 없습니다. 또한
역함수의 그래프 위의 점 (3, 1)에서의 미분계수를 구하고 싶으면
이 도함수에 y=1을 대입하면 됩니다.
4.의 의미
앞에서도 언급했다시피 함수 y=f(x)와 그 역함수가 y=g(x)가 모두 미분가능하면
이 성립합니다. 이 식에서 (x, y)는 역함수 y=g(x) 위의 점을 의미합니다.
만일 점 (a, b)가 역함수 y=g(x) 위의 한 점이라면 다음의 식이 성립하겠죠.
이때, g'(a)는 역함수 y=g(x) 위의 점 (a, b)에서의 접선 기울기,
f'(b)는 함수 y=f(x) 위의 점 (b, a)에서의 접선 기울기를 의미합니다.
따라서 위 식은 두 접선의 기울기가 서로 역수관계임을 의미하겠네요.
그럼 문제 하나 풀어봅시다.
이 문제는 2010학년도 9월 모평 가형 27번 문제입니다.
f'(a)와 g'(a)를 구하는 문제인데, 역함수의 도함수는 구할 필요가 없고
다음과 같이 를 이용해서 역함수의 미분계수만 구하면 됩니다.
(1) f'(a)의 계산
함수 f(x)의 도함수 으로부터
(2) g'(a)의 계산
g(a)=b라 하면 로부터
(3) 답 계산
g(a)=b로부터 f(b)=a이므로
이다. 이를 이용하면
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
운동팟 결성햇다 0
낄낄
-
성대 사과 0
642.82인데 추합 돌아오긴 어렵겠져..?
-
평가원 커하 1
95 98 1 97 100 네…
-
미대입시생이었는데 서홍국 곽건이 떨어지고 여기만 붙음 그래도 미대중에선 대충...
-
이거 대체 뭔가여? 무슨맥락에서 만들어진거인지 설명 가능한분.
-
머리 ㅈㄴ 기네 3
헤어밴드 껴도 눈 가리네
-
평가원 커하 6
100 100 98 98 놀랍게도 모두 한 시험에서 커하를 찍었다
-
평가원 커로 2
수학은 80점인가 81점(이게 4등급 ㅋㅋㅋㅋㅋ) 다른 과목도 다 4등급이...
-
100억 생기면 4
바로 학교 자퇴 때려야겠다
-
안녕하세요 이제 2학년 되는 숭실대생입니다 반수를 하려고하는데 탐구과목을 뭘...
-
국어: 백분위 98 수학: 1등급 영어: 원점수 98점 물1:원점수 47점...
-
컷 존나널널하네ㅅㅂ
-
국 5 수 5 영 1 물 (작년) 4 지 (작년) 5 생윤 (올해) 2 세지...
-
오노추 1
-
김상훈 유네스코 0
유네스코 화작교재 에 최근 기출 모두 실려있나요? 마닳 살려고 했는데
-
심지어 커플이신것 같은데 요주의 인물들로 예의주시 하겠습니다.
-
언미물1지2 98 96 1 83 95 그냥 물리 진작에 안 버린 내가 병신이지 응..
-
나간다
-
국어 94 수학 68 영어 3등급 물리1 65 생명1 81
-
평가원 커하 23
100 98 2 99 98 모두 한 시험지에서 나옴.
-
우하하하하하하하 1
저 쌓여있는 교재를 보니 내가 웬지 수능 만점을 받을 것 같은 느낌이 들어
-
올수 14번을 절거나 틀렸다 도형보면 머리아프다 평가원 도형문제중에 크게...
-
의외로 고3 때랑 큰 차이 없네
-
100 98 1 99 99 94 89 1 92 88
-
평가원 커하 0
99 97 2 75 90 근데 이제 국어 빼고 다 수능인
-
마음은 든든한 국밥한테 가는거 같음 우짜냐
-
주인이없네
-
커로 모음 3
85 51 5 85 87 수학 51은 자퇴 이후 처음본 현역때라 이해해주셈..
-
학력으로 외모를 커버하겠다
-
커로 성적 6
90 92 4 80 84 6평+9평
-
음마싯다
-
두각수학황 3
출격.
-
커하는 5
99 89 2 100 99
-
백분위 국어 97 수학 88 영어 2 물1 62 지2 71 악악악악악악
-
솔랭에서 도란만 기다린다모 도란과 도란도란 협곡데이트 이런게 짝사랑하는...
-
해도 되는거 맞죠?
-
엉ㅇ엉 울고싶다 7
한 10시간 정도
-
ㅇㅈ 0
혼또니 오모시로이
-
06두기 성인되고 마시는 첫 술임 (근데 수능치고 일본,베트남 가서 마셔본 적 있긴 함)
-
국어 커하 (98, 100(이하 원점수-백분위 순)) 수학 커로 (76, 85)...
-
커로모음이라 3
81 80 5 87 74 참고로 뒤에 4개가 한 시험에서 떠버림
-
*백분위 85 58 (3) 82 80 100 85 (1) 100 100
-
자 생2 버리고 10
생2는 좀 아닌거 같고 사문이랑 같이 할 사탐과목 추천 받습니다.. 근데 사문 지1은 별론가?
-
하루종일 누워만 있으니 이젠 고양이가 막 밟고 다녀요 원래 사람 근처 잘 안 오는...
-
여붕인데 대학교 오티 전에 춤 몇개 배워두려고 댄스학원 무료체험을 가봄 다대일...
-
윈터스쿨 환불 0
저랑 너무 안맞고 몸이 상하는게 느껴져서 환불하려고 하는데 보통 학원에선 해주나요?...
-
麻婆豆腐 1
-
연전전 추합권이었는데, 지금 점공보니 등수가 엄청 밀려있네요ㅠ 40% 조금 넘게밖에...
라이프니츠 미분법의 장점이죠ㅋㅋdy/dx를 분수꼴(?)로 생각할 수 있다는!
그렇죠! 합성함수의 미분법(연쇄법칙), 매개변수로 표현된 함수의 미분법, 매개변수로 표현된 함수의 이계도함수, 더 나아가면 치환적분도 분수로 간주할 수 있구요~ ^^
감사히잘보고갑니다
감사합니다~~^^
명쾌합니다!!!
Dy/dx를 어떻게 읽죠? 디엑스분의 디와이거 아니라던데여
그냥 디와이디엑스 라고 읽으시면됩니당~