행렬 영인자에 대한 질문과 -_-;; 모의고사 질에 대한 질문..?
게시글 주소: https://ui.orbi.kr/0003675692
행렬 합답형 문제를 풀다보면.. 영인자를 이용한 풀이 혹은 반례를 이용한 풀이가 좀 나오는데..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사설3에서 수능1 사설1에서 수능3 내가봐도 좀 이상함ㅋㅋㅋㅋ
-
국어 수학 2~3정도 영어 사문은 1~2정도(거의1) 화학에서 사탐런 하려고 하는데...
-
제일 중요한 건 3
집중력임
-
수능이 끝나고, 각 입시기관별 분석이 쏟아져 나오고 있습니다. 선택과목이 나뉘고,...
-
J는 검사인 Y를 꼬셔서 #~#
-
앞으로 과탐계의 쌍사는 화1물1이다 이상.
-
집밖은 위험하지만 그래도 노력해보기로 했음!
-
건동홍이 가능하구나 과목은 화작확통생윤사문이었음
-
휴 시간 옮겼다 3
점심시간 확보 완 옮겼더니 나타난 십자가??? 오...
-
쓰니들아 1
뭐해
-
기술:엔트로피 부호화 인문:가능세계 과학:개체성 주제통합:바나나 경제:오버슈팅...
-
내 이야기 아닌줄 알았는데 올해 사설 포함 모든 시험 중 수능을 제일 잘봄 이감...
-
ㅠㅠ
-
팔로우해주세요.. 맞팔해드릴게요..
-
한 번 포텐 터지면 이만큼의 효자 과목이 없는데 그 포텐 터지는 시기가 수학처럼...
-
날이 너무 춥다
-
아로하 들을 때마다 감탄함 게이아님
-
그냥 주인공이 스쿠나 먹어서 개쌔진다음에 저주들 패는 애니같은데 이게 뭔재미지
-
전전 가려면 둘중에 어디로 가야함??
-
ㄹㅇ 4년만에 하니까 운동 다이어트>>>>>>게임임ㅋㅋ 운동과식단으로살을빼보자
-
올해 막판에 상상 국바 월례등등 엄없회차 폼 비정상적으로 좋길래 잔뜩기대하고...
-
난지금약자인데 2
노약자석에앉고싶다
-
날짜만나오고 시간이 안나와요
-
ㅈㄱㄴ
-
마이크로스트레티지 2배 롱 들어갔다가 뭔가 쎄해서 바로 나왔는데 자고...
-
둘 중 어디 입시가 빡셀까요? 진로는 어디가 더 좋을까요?
-
일단 기하를 고르는 가장 큰 이유는 공부 조금하고 날로 먹기 위해서임 (뇌피셜)...
-
20,21살의 풋풋함은 사라지고 예뻐보이고 싶어서 대부분 성형이나 과한 화장으로...
-
지하철타고 편도 15분인데 한번더 하라는 신의 계시인가
-
그남들아 ㅋㅋ 동덕여대는 해방되지않는다 익이 ㅋㅋ 14
어그로 ㅈㅅ 이성적이면 동홍 낮은과 ㄱㄴ?
-
원래 만표는 23페이지 난이도로 결정되는데 중위권 학생들이 23페이지를 얼마나 잘...
-
예비 고3이고 생지런한 사람인데요 내신베이스(마더텅, 수특 한바퀴)이고 유전문제...
-
[이동훈t] 2026 이동훈 기출 교사경 편 예판 시작 ! 5
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
-
ㅆㅂ 톰 마타 둘다 놓쳤노
-
수학 22 26 30을 다풀어놓고 실수땜에 11점을 날리기 진짜 정신병걸릴거같다.....
-
과탐 2개셨던 분들 -> 사탐 하나 낄 의향 다들 있나요
-
재종 장점 5
재종다니면 어떤점에서 좋은가요? 내년에 수능을 볼 것 같은데 독학할지 재종갈지 고민되네요.
-
경제 사문 만표 73 기원 ㅋㅋ
-
놀랍구만
-
1너무많이 나와서 멘탈 박살남 ㅋㅋㅋㅋ
-
제발
-
과탐 가산점 안 주는 13
대학 있나? 스카이 서성한에서 고대 인문계열은 과탐 가산점 주나?
-
진짜 ㅈ고인것같은데
-
수능때 2틀해서 45 ㅅㅂ 하
-
남자고 키 187cm 82kg면 돼지임??? 헬스하는 몸이고 체지방률...
-
경북대 수의예 0
논술 걍 가지말까? 붙여주면 기어가긴 하는데 3명 뽑기만 하는데 컷 ㅈㄴ 높을듯...
-
거의 과탐급임 ㄹㅇ
교과서에서는 영인자라는 용어를 사용하지 않을 뿐이지, 영인자의 개념은 그대로 사용하고 있습니다.
실수의 곱셈에서 ab=0이면 a 또는 b가 반드시 0이 되어야 하는데,
영인자라는 게 행렬의 곱셈 AB=O에서 A와 B행렬이 영행렬이 아니더라도 저 식을 만족시키는 행렬이 존재한다는 거잖아요.
역행렬이 존재한다고 해서 무조건 영인자인 것은 아니지만,
영인자이기 위해서는 반드시 각각의 행렬이 역행렬이 존재하지 않아야 한다라는 사실도 알면 좋겠죠.
참고로 영인자는 행렬 하나만 지칭하는 게 아니라 행렬쌍을 일컫는 말입니다. A와 B는 영인자이다. 이런식으로요.
영인자 라는 용어보다는 반례를 찾는다고 생각해야 합니다.
반례를 찾는 명제 판정은 적분 통계 등 합답형이라면 매번 출제됩니다. 이러한 문제에서 반례를 안찾았던것처럼 느껴지는 이유는 참이라는 보장을 못하는 문제에서 반례를 안찾고 틀렸다고 하고 넘어가기 때문입니다.
많은 사람들이.. 반례를 찾는게 아니라 하는데 음.. 반례를 찾는 거군요.. ㅜ ㅜ
어느 수준 까지 반례를 찾아봐야 하죠..? 행렬 합답형의 경우?
반례를 찾는건데 반례를 안찾아도 된다는 뜻입니다. 그런데 반례를 찾을 줄 알아야 합니다.
(본인의 수학 실력이 높아질수록 반례는 점점 필요없는 존재가 됩니다)
행렬 합답형에서 반례를 어느수준까지 찾아봐야 되느냐 그런말도 없습니다.
그냥, 증명이 되면 증명을 하는것이고, 그것은 참인 명제입니다.
증명이 되지 않으면 그건 명제가 틀렸으니까 증명이 안되는 것이고, 당연히 거기서 X표 그어도 됩니다.
본인이 의구심이 많이들면 반례를 찾는 것입니다. 그 반례 리스트를 외울 필요는 없습니다.
아마 그 의구심이라는 것은 2등급쯤 되면 점점 줄어드는걸 알게됩니다. 1등급쯤 되면 선지 식변형 좀 하다보면
'음 이건 안되겠네' 이런 것이 바로바로 나오게 될겁니다.
예를 들어, 작년 9평 ㄱㄴㄷ같은걸 보면 (B-E)^2=O이면 B=E이다.
이런 명제가 있는데, 과거 A^2=O이면 A=O이다 라는 명제가 틀렸고, 그것 때문에 반례를 찾아봤던 경험이 있다면,
이제는 그런 명제를 시험장에서 만났을 때 "당연히 틀렸네" 이렇게 할 수 있다는 것입니다.
즉 반례를 안찾아도 되는데, 반례 안찾아서 틀렸다고 긋는것이 자신 없으면 반례를 찾으시면 됩니다.
반례는 평가원에서 출제된 문제인 경우, 역행렬이 존재하지 않을 때 반례가 나오는 경우가 절대다수입니다.
반례를 절대 리스트화하지 마세요.
흐.. 감사합니다.. 합답형 문제를 풀때 포카칩님 말씀 참고해서 좀 더 차근차근 풀어봐야겠내요.. @_@! 감사합니다