-
짝수형 배정받으면 큰 차이 있나여
-
아 지각 0
쩔 수 없지 한잔해~
-
제발… 남생각도 좀 해줘..
-
삼선기 개웃기네 0
다시생각해도 뭔가 웃겨 청렴하던 존잘알파메일 선비가 아내버리고 기생학교설립하고 결국...
-
네이버운세 0
운세 나쁘지 않은데?
-
영어연계부활해주세요 10
제발부탁드립니다 간접은 너무했아요
-
개인적으로 몰랐던 지엽을 모아봤습니다 모두 파이팅!!!!!! 끼야아아아앙ㄱ!!!!
-
홉스는 사회계약을 자연상태에서 계약한게아니야?? 그럼 선지에서 홉스는 자연상태에서...
-
네이버 운세 0
그러니까 국어만 잘보면 된다는거지?
-
지역 드론 조종사 협회랑 요리사 협회는 자발적 결사체인데 왜 평론가협회는 공식조직인가요?…
-
ㅋㅋㅋㅋㅋ 아직도 화작풀고있을거같음
-
운세 평가좀여 1
-
네이버? 니가뭔데.
-
평소 강박있고 집착 심한사람들이 보면 뭣도 아닌거에 초조해지고 멘탈 갈릴 가능성이...
-
아무래도 우리 중에 첩자가 있는거 같음. 2025 표지도 다른 투표안 많았는데...
-
할게없음
-
안올라오나 올해는
-
아 네이버운세 1
국어 망하겠군 아침에 무슨사고가 터지려나
-
얘들아 지금 페미가 어쩌구 동덕이 어쩌구 할 때가 아니야 4
걔넨 수능 망치고 여대갔지만 너넨 잘가야 될거아니야
-
바로 한남을 육성하는 고등학교들을 다 부수는것밖에 없습니다!라고 외치고 마침 내일도...
-
그래 실수만 하지말자 끼에엑
-
기분 개이상하네 0
쫄리는데 안 쫄린다 이4ㅔ 뭐노
-
점령당해서 재학생들 서담으로 피신ㅋㅋ 남녀할거없이 미친 페미군단 서담에서 쌍욕중 ㅋㅋ
-
국어 순서 0
저는 맨앞에 독서 지문 1개 풀고 화작 푼 다음에 독서 문학 왔다갔다 푸는데 괜찮은 거 같음?
-
아니 ㅅㅂ 7
서울세종고가 어디야
-
재수때보다더떨리네
-
다시 덮음 이건 아니야 걍 기출 뽑아 다시푸는게 나을 듯
-
영어 한국사 <<< 얘네는 물까진 아니어도 평이한게 좋아..
-
고등학교때 짝사랑 여자애가 나오는게 참신기하네 뭐지..
-
진짜 얼탱이가 없네
-
홀수형 0
재수할 생각 있는데 하 ㅋㅋㅋㅋㅋ
-
민이형은 서울대 법대를 포기하고 경북대 의대를 갔는데 나는 재주생이라니..
-
21수능때 당했는데 또 당해봐라 식으로 낸다면?
-
홀수형 주면 진짜 평가원 저주한다
-
운세 ㅅㅂ 1
드가자 드가자
-
컴싸 받으면 종이에 눌러서 납작하게 만들라구 하잖아요 ( 한번에 찍히게 ) 제...
-
진짜 하루전이구나..
-
홀수형 0
-
내일은 똑바로 읽어야지
-
그래도 전날인데 1
지구 모고 하나는 풀어야겠다
-
24시간 뒤면 1
과학기술지문을 읽고있겠지
-
지금 수험표받으러 갈 수 있나요?
-
아 진짜 흥분됨 1
이틀뒤면 리제로3기를 애니로 캬 ㅋㅋㅋ
-
ㅋㅋ
-
예비소집하는곳에 전화해서 내 시험장 어딘지 여쭤보고 수능 당일날 시험장에서 수험표 발급받기 가능??
-
선지 배열 이상하게 나와도 럭키비키 짝수형이자나~ 할 수 있음
-
지문 긴 과목이 또 뭐있음??
-
덕분에 22수능 때 국어 11번 문제 1분컷함
-
연계? 실모? 작수? 그냥 주요 지문?
-
예비소집일에 신분증 가져와야하는거 맞죠? 하.. 클맀네
우웨에에엑
예비시행 22번보다 겉보기는 훨~씬 어려워보이는데 ㅋㅋㅋ
이렇게 나오면 문돌이들 거의 다 박살날듯 ㅋㅋ
그렇다면 저의 계획은 성공이네요 ㅎㅎ ㅆ갓님들 달려와서 너무 쉽다 할까봐 걱정했는데
풀기 시작
f(x)=(x-cos(theta))^2(x-sin(theta))^2=x^4-2(cos(theta)+sin(theta))x^3+(1+2cos(theta)sin(theta))x^2-2cos(theta)sin(theta)(cos(theta)+sin(theta))x+cos^2(theta)sin^2(theta)=t(x+1)에서,
f(x)-t(x+1)=(x-a)(x-b)(x-c)^2꼴일 때 교점 개수가 바뀌므로.....아 이거 계산 좀 해야 하네요? 타이핑으론 무리겠다
문제 조건 '서로 다른 교점 개수' 아닌가요 뭔가 이상한데 ㅠ
답 34? 근데 좀 엄밀성에서 불편한 게, 최댓값이 13/4×pi로 '수렴'하지, 실제 그 값은 될 수 없겠네요.
서로 다른 교점 개수 이거는 수정하겠습니다.
그런데 어떻게 푸셨는지 봐도 될까요? 저는 답을 19로 생각하고 있었는데요
g(alpha)=6, g(beta)=2이니까 sin(theta)=cos(theta)인 상황일 때 g(beta)=2이므로 beta=pi/4+n×pi(n은 정수)일 때 성립합니다.
g(alpha)는 alpha가 sin(theta)=-1 또는 cos(theta)=-1인 상황과 g(beta)=2를 만족하는 실근을 제외하고는 전부 6이 되므로 g(beta)=2인 상황을 제외하고는 theta=-pi, -pi/2, pi, 3×pi/2일 때를 제외하면 된다. 따라서 |alpha-beta| 최대값은 (alpha, beta)=(-2pi, 5/4×pi), (-7pi/4, pi) 2 경우에서 성립한다. 즉, q/p=13/4이고, n=2이므로 (p+q)×n=34이다.
(2pi, -7pi/4)일때 최댓값 15pi/4가 나온다고 생각했는데 제가 잘못 생각한 것이 있나요?
아, 잠시만요. 제가 거기서 꼬였나보네요. 네, -5/4×pi에서가 아니고 -7/4pi에서겠네요.
그렇군요. 이렇게 열중하여 풀어주셔서 정말 감사드립니다ㅜㅜ