허를 찌르는(?) 고1 수학 킬러
게시글 주소: https://ui.orbi.kr/00034628743
예전에 본고사 공부하다가 인상깊었던 아이디어 바탕으로 내봤습니다(이땐 복소함수론의 기초를 고등학교 교육과정에서 다루던 정신나간 시절이긴 하지만ㅋㅋ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대구쪽 초중 위주 학원 조교 지원했는데 3개월만 하고 서울 간다니깐 그럼 출퇴근은...
-
진짜 왜 이러고 살았지 존나 나대네
-
오르비에 슈퍼루키 두명 drop ㅋㅋ
-
세상은아름답고 난그아름다운세상에 다이빙중 모두해피
-
찍어보고싶다 흠
-
입대 시점은 고민중입니다만 1년 안엔 가지 않을까 싶어서요... 혹시 그 전에 하면...
-
질받 2
연애 중입니다
-
화2가 낫다는 거는 뭐지 재수를 원한다면 화2가 맞다 수능에서 가장 재능타는 과목이...
-
바이바이
-
올해 사관학교 미적분 28번과 수능 미적분 28번 같은 교수님이 내심? 0
문제형식이 유사하고 수능에서는 계산을 더 물어봄
-
두각 라이브반 0
두각은 시대처럼 라이브반 없나요? 올해 의대관 다니면서 김진영쌤 수업 너무 좋았어서...
-
마라톤 완주하면 메디컬 가능한가요
-
커트 코베인 5
락 음악 역사상 최고 GOAT
-
올해 모논 다들 풀어보셧나요?
-
라면사리를 곁들인. . .
-
한 번 더 하면 세 급간정돈 가능할거 같음
-
주짓수나 복싱은 스파링 무서워서 못하겠음 어릴 때 스파링하다가 상대가 엎어치기...
-
개념은 예전에 한두번 돌린적이 있는데 뉴런들어도 될까요?
-
좀보자
-
그 숫자아닙니다~
-
백분위 메가기준 화미생지 91 81 2 89 91 공대 어디 가능한가요 그리고 지금...
-
본인이 코논데 옆방에서 누가 비망록 부르고 있다? 들어오세요 같이 부르죠
-
좀미쳐있는사람들이 유리한게임임
-
지금 한서삼 라인인거로 아는데 저기서 더 떨어지면 강원대 수원대 강남대 이런 곳인데...
-
회 먹고 싶은데 7
피자도 먹고 싶음...
-
올해 수능 원점수로 언 미 생윤 사문 100 100 44 50 나와서, 우선 이화의...
-
개념강의+복습+기출 이후 하루 30분정도 투자하면되나요? 하루 1시간이상써야되고...
-
심심하니 4
소금을 먹어야겠어요
-
잔다해놓고안자기 7
-
정시의벽
-
싫어요
-
어제는 많았잖아
-
이제 고3올라가는 고2입니다 내신을 버리고 정시를 준비중이라 겨울방학에...
-
독도는! 2
-
작년 이맘때에 올라온 글인데 기가 막히게 적중했네요;; 올해도 있으면 좋겟는데
-
왤케 턱턱 막히죠 자연이랑 아예 다르네
-
58kg임.. 15
실화냐..
-
화장도 안하는데 이쁜 10
화장도 안하는데 눈코입 다 쨍하고 얼굴 비율 그냥 고양이 ㄷㄷ이런 사람이랑...
-
탐구 하나 확정1인거 빼고 국어는 1점차로 2고 수학 메가2컷 부산교육청3 영어...
-
십덕의 오노추 2
https://www.youtube.com/watch?app=desktop&v=1RQ...
-
근데 눌러서 2번 봤더니 옯붕이더라...
-
난 오르비언들 사랑해 24
내가올해살아있을스있었던건 다너희들덕분이야 진짜로사랑해 진짜로...
-
프사 ㅋㅋ
-
의대증원 정시 0
현재 확률뜨는건 의대증원 고려해서 내려간 입결 기준으로 뜨는건가요??
-
목이 아프군아 4
목캔디가 필요해
-
미적vs기하 과탐vs사탐 뭐 추천??
-
나를 허락해준 세상이란
-
아 진짜로 5
대학원 준비해볼까
-
1M 이상이면 음수 아니냐
허수부분이 사라지겠네요.
부등식 성립하려면 실수?
응? 실수가 아니면 부등식에 넣으면 안될텐데요... ㄷㄷ
실수가 아니다 -> 부등식에 넣으면 안 된다
이 명제의 대우를 생각해보시면..
네 그러니까 그냥 그렇게 풀면 되는거 아니냐는 뜻이었... 말을 좀 오해가게 썼군요 ㅋㅋ
z=a+bi(b=/=0)이므로 z+1/z=(a+a/(a^2+b^2))+(b-b/(a^2+b^2))i>=1이므로 a^2+b^2=1, a>=1/2이 성립한다.(단, a,b는 실수)
(a+sqrt3b)^2<=(1^2+3)(a^2+b^2)=4에서 a+sqrt3b<=2
a>=1/2 조건까지 쓸 수 있는 문제였으면 더 좋았을 텐데 아쉽네요.
코시-슈바르츠 부등식에서 등호 조건 성립 여부를 알 수 있나요??
저 경우에는 1/a=sqrt3/b일 때겠죠. 애초에 저 부등식이 (sqrt3×a-b)^2>=0에서 유도된 거니까요.
사실 정답이 경계값(a=1/2)에서 나오도록 의도하긴 했습니다ㅋㅋ 님처럼 아예 해석적으로 푸는것도 편하겠네요
복소평면을 그려보자. 부등식이 성립하려면 z+1/z는 실수여야 한다. z와 1/z는 편각이 반대이므로 허수부분의 크기가 같으려면 둘은 단위원 위에 있다. 이때 더해서 크기가 1 이상이려면 z의 실수부분은 1/2이상이므로 z의 편각은 -60~60도 사이다. a+sqrt(3)b를 편각 60도인 선분과의 내적으로 해석하자. 최댓값은 z의 편각이 60도일때이다. 계산하면 답은 2
씹갓
노예님 풀이에서 코시-슈바르츠 부등식의 등호 성립 조건이 두 벡터가 평행할 때라는 것을 생각해 보면 본질적으로 같은 풀이네요
이렇게 푸는 건가요?
사실 a가 0.5로 고정되는게 아니고 [0.5, 1)의 범위를 가지긴 합니다. z=a+bi라는 식을 z+1/z에 그대로 대입하셔서 a, b에 관한 관계식을 얻는 풀이를 의도했습니당