패러독스paradox (무한등비급수 배운 사람만..)
게시글 주소: https://ui.orbi.kr/00032016088
논리학에서 역설(paradox)은 일반적으로 다음과 같이 정의됩니다.
이러한 역설은 전제가 거짓임을 보이거나,
전제로부터 결론을 이끌어낸 방식이
타당하지 않음을 보이는 방식으로 해결할 수 있습니다.
(여기에 해당하는 구체적인 사례는 맨 아래에 소개해뒀습니다.)
그런데, 전제나 추리방식에 흠 잡을 만한 구석이 없다면?
내키지 않더라도 논리적인 사람이라면 결론을 수용해야 합니다.
(여기에 해당하는 구체적인 사례는 맨 아래에 소개해뒀습니다.)
이게 논리학을 공부하는 이유니까요.
심리학이 어떻게 생각하는가에 대해 다룬다면,
논리학은 어떻게 생각해야 하는가에 대해 다룹니다.
--
다음 3분짜리 영상은 위 짤들의 출처로서,
시험에 나왔거나 나올 수 있는 구체적인 사례가 추가되어 있습니다.
가급적 무한등비급수를 배운 학생들만 보길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울대 합격기원 5일차 너무나도 가고싶구나
-
서울 시발 사람만 존나많음 숨막힘 서울에만 있는것중에 나에게 없으면 안되는건 한개도...
-
테뉴어 있는 국립대 의대 정교수야 그냥 자기 맘대로 일해도 뭐라할사람 없지만 사립대...
-
인가경 라인 한번만 돌려주실분 있나요..? 곧 논술입니다 결정해야돼요..
-
동사 45 / 세사 48
-
강기본부터 새기분까지 강민철 커리 탔는데 26강E분 하기 전까지 뭐 들을지 추천 부탁드립니다
-
가천대 전기공 논술입니다
-
번역이 이상해 그냥 영어로 보는 게 마음이 너무 편함
-
. 9
벡터 분해 후 힘 합성 벡터 분해 후 평속 두 물체 동일 가속도 충돌 -> 하나...
-
이번 미적 28 29 30 다 틀렸는데 시발점부터 다시 할까요? 1
고민중 베이스가 약한건가 싶기도…
-
Riesz representation theorem 3
Schur's theorem Gram-schmidt orthogonalization...
-
수학 난이도 어땠음?
-
현역때 35343으로 덕성여대 붙었는데 24221로 덕성여대를 가..? 수학이 많이...
-
신검받으러가요 9
귀찮네요
-
한심한 2
나!
-
지구 노베고 오지훈쌤 들으려면 메가패스 구매해야하는데 그냥 이훈식쌤 듣는게...
-
3수하면 슬픈점 6
내가 군대다녀오면 나랑 동갑인 사람중에 대학을 졸업하는 사람이 나온다는 거임..
-
한지 vs 사문 2
현재 사탐런을 준비하고 있는 예비고3입니다. 평소 세지 관련 상식이 많아서 탐구 두...
-
안정적으로 될까요 아니면 좀 빡센가요
-
물리 잘 6
할거 같이 생긴 나
-
장난전화 0
-
1년전이랑 똑같은글 썼는데 똑같은반응이 있음,,,,,,
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
독서 배경지식 쌓을려고 교과서 읽는 건 어떻게 생각하세요? 2
중학교, 고등학교때 뭘 하고 왔는지 관련 지식이 떠오르지가 않네요... 젠장할...
-
대가로 내 이미지가 곱창날거 같긴한데..
-
근데 진짜 이감 성적이랑 수능 성적이랑 거의 상관이 없나봄 1
상관이 있어봤자 고득점하면 한 수능날 3등급 이상은 맞는다 이 정도 근데 아무짝에...
-
크럭스나 피오르 1
당일날 미리 대기타고 파바박 해도 실패 할 확률이 있는거죠...? 하 너무 절실한데 ㅠㅠ
-
오늘도 다 퍼진 라면 먹으면 개추좀.. 나임 뭘봐
-
약간 잠긴 목소리 이것부터가 분위기 압도하네 걍
-
나머지는 그냥 2하는거 추천 특히 물2화2는 대학다니는 공붕이들이 다시 공부하기에...
-
내투자철학임
-
주제넘게 사람살리는 의사 되려고 나대지 말라는거임 니가 특출난 사람이 아니고...
-
님들 어그로 죄송한데 김범준 커리 탈까요 현우진 커리 탈까요 올해 수능 81점(20...
-
하 시발 악몽꿈 0
수능 이미 좆망했는데 수능장에서 허둥대는 악몽꿈ㅋㅋ
-
어차피 설명의무를 다하지 않았다는 판결 그거 그냥 꼬투리잡고 도의적 배상하라는...
-
연고대 가고싶다 0
제발 사탐이들에게 구원을
-
병훈T 강의가 곧 사라진다는 사실이 너무나 아쉽네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
n년을 쏟아부었는데 올해도 안될것 같네요 정시의대는 진짜 미친짓인것 같습니다
-
책 추천해주세요 8
경제 관련된 걸로
-
님들이라면 어디 가심
-
ㅈㄴ 생산적인데 시간도 잘감
-
텔그살말 3
7만7천원 내고 궁금증을 해소함과 동시에 정신병을 얻기
-
난 사실 미소녀 12
겠냐 왜 들어옴?
-
보통 가천대 준비히면 학원들 다니길래
-
지사의랑 입결 비슷한가요
-
내년에 또 할거같은데 목표는 메디컬임 올해 수능 화학 47점 맞음..2컷 점수고...
-
쉬워서 할말이없네ㅋㅋㅋㅋ
그리고 논리체제에서는 참인 명제가 완전하다는 증명을 연역적으로 할 수 없음이 증명되었죠
'참인 명제가 완전하다'는 주술호응이 어긋난 것 같습니다..
괴델의 불완전성 정리 말하시는 것 같은데, 그건 수 체계에 대해서 말하는거고, 괴델은 오히려 1차 논리가 완전함을 증명했습니다
수 체계에 한정되지 않고, 어떤 formal system이 존재하여 참이면서 증명될 수 없는 명제를 포함한다는 것을 밝힌 거 아닌가요?
논리학...곤란...
시험에 곤란한 내용이 자꾸 나와서요...
무한등비급수는 중복된 표현인걸로 알고있습니다 급수안에 무한의 뜻이 들어가있어요 참고하시길
흥미롭네요. 근거를 알려주신다면 살펴보겠습니다. (설령 동의첩어라고 할지라도 문제될 건 없는 것 같습니다.)
이랬다가
이렇게 바뀌었습니다.
급수는 수열의 모든 항을 더한 것을 의미해요.
항의 개수가 유한한 급수를 유한급수라 하고, 항의 개수가 무한한 급수를 무한급수라고 합니다. 등비급수의 의미는 등비수열의 합을 의미하고, 무한등비급수는 등비수열의 합에 극한을 취한 것을 의미해서 괜찮습니다.
답변 감사합니다. '급수'의 국어사전 표현이나 영어 표현을 봐도 무한을 함축하는 것 같지는 않더라고요.
아하 저는 인강쌤한태 그렇다고 들었었는데 아니군요 머쓱..
그 분이 맞습니다. 그 분이 저였으면 더 좋겠고 ㅋㅋ
아닙니다. 새 교육과정에서 급수는 무한을 가정하고, 유한한 경우 부분합이라고 정의합니다. 무한등비급수는 등비급수라고 바꿔야 맞고, 등비수열의 합은 유한등비급수라고 하지 않습니다.
저도 이렇게 알고 있어요.
헉 그렇군요 짚어주셔서 감사합니다
새 교육과정에서 그렇게 정의하는군요. 근데 그렇게 정의함으로써 무한급수에서 '무한'이 잉여적 표현이 된다고 해도, 무한등비급수라는 표현이 틀린 건 아닌 것 같네요. 동의첩어는 흔한 현상이니..
(선생님, 틀리고 맞고를 떠나서 올드해보여요. ㅋㅋㅋ)
국민학교 때 -읍니다라고 받아쓰기하던 세대는 조심해야 합니다. ㅠ
제가 올드한 건 팩트이므로 이견이 없습니다..
급수는 걍 수열의 합인데요
제논의 역설 중 아킬레스와 거북이 역설입니다. :)
제논의 역설은 칸토어에 의해 깨지지 않았나요
찾아봤는데 수열의 항의 개수가 유한한 수열의 모든 항을 더한 것도 급수로 포함되서 무한등비급수라고 써도 문제 없는 듯합니다
무한등비수열의 모든 항을 더한 급수니깐요.