(해결완료) 포모 3회 14번 ㄷ, 풀이 오류좀 봐주세요.
게시글 주소: https://ui.orbi.kr/0003153020
친절한 답변 감사합니다ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실모 난이도가 어렵든 쉽든 항상 80~88점대가 나오네 벗어날수가 없다...
-
올해 메디컬최저 1
사탐런이 가능한 학교들은 전부 올라가겠죠? 근데 건수나 동약같은경우에는 걍 경쟁률이...
-
타지에서 시험쳐야되서 부득이하게 전날 모텔갈거 같은데 전날+아침에 공부할거 가져가면...
-
깔아줄게.
-
어떻하나요
-
수능에서 중요하나요? 1순위로 외워야 되나요?
-
확통 기출강의 0
ㅊㅊ해주세요 대성으로요
-
이게 뭐야 오늘도 평화로운 오르비 오늘은 지인선 모의고사를 풀어줄 건데요 시간...
-
지구과학 앞부분 잊어버려서 복습할겸 전체단원 한번더 푸려고하는데 뭘 추천하시나용...
-
먼가 붕뜨는 느낌인데 미적에서는 더 많이 나오나요? 흠
-
방정식과 부등식 theme13 2번째강의임 무려 현강시절 윽건이를 볼 수 있음
-
주어진 시간이 끝나기 전에는 절대 먼저 포기하면 안 된다는 것인듯… 스스로에게 해주고 싶은 말이네요
-
병신같은 교수가 진도 다 못 빼서 이번주에 보는데 ㄹㅇ ㅈ같다 진짜 그냥 2학점...
-
그냥 병신인거 같다. 열품타 올해꺼만 2200시간 찍혀있는데 잘못 측정한거 다...
-
이거 유튜브댓글 많이보이던데 밈임?
-
왜 잠이 안오냐 0
ㅅㅂ
-
주말 전투휴무 제외임
-
61분 89점 비문학 -5 문학 -4 화작 -2 비문학 실리콘 지문에서 5점 나감...
-
스토리 올리는 사람도 몇 명 없네
-
딱 이거만 다 하고 들어가야지..
-
지가뭔데 지한테 존댓말로 꼬박꼬박 부탁을하라고 요구를하지 반말로 하는게 훨씬 편한데...
-
작년 3덮인가 4덮에 나왔었던 거랑 비슷한 문제인 것 같은데 저렇게 인테그럴...
-
화요일부턴 7시반~8시 사이엔 일어나야 되는데 ㅈ됐네
-
독서 기출 지문 다시 읽으려 하는데 제가 예전에 분석하면서 필기해놨던 교재 읽으면서...
-
아 이제 잔다 0
갑자기 이어폰이 한쪽이 작동이 안돼서 기다리고있었는데 안되겠어 닉네임은 바꿨습니닼
-
다시풀으면서 피드백할거 추천받아요
-
여르비한테 쪽지 받음?
-
가능할까요…?ㅠㅠ 하루에 3~4번씩은 들을려고 하는데 지금은 3~4개 틀리는거 같아요
-
할건해야지..
-
6모보다 극혐인 점수는 처음이네;;
-
생명 N제 한번 싹 풀려고하는데 올바원, 프로모터 중에 뭐풀까요? 최저라라 3등급...
-
수능액땜 1
밤열두시에 화장실 갈라고 나갈라는데 방문 손잡이 고장나서 갇힐 확률 몇퍼(전형적인...
-
추천좀
-
지금 자면 개꿀잠각인데
-
미적 거의 개념이랑 3점기출 한정돈데 현강들어도 될까요?
-
사문 개념 빨리푸는법 12
유튜브 얘말 맞는말임?
-
내일은꼭!! 3
스카도가고 코노도가고 산책도하고 다할거임!!!!
-
이제 아무도 없군 38
휴
-
비율 21~24라인 개쉬웟음? 23하나 틀렸는데
-
어떡하죠막상오르비이새끼좀재밌네자꾸늦게자고그러면안좋은데그냥과감하게휴릅해서수면패턴의정상화...
-
33점.
-
국어 강민철 인강 들을려하는데 독해력 높아야 듣기 편하대서 독해력 좀 올릴려고...
-
일주일동안 뭐하지
-
야얘들아 10
좀 자라
-
롤 내전이 진짜지
-
노맛임..
풀이1,2 둘다 틀린 것 같아요. 문제 조건에 det(A)=1이 있는데, 풀이 1 중간에 보면 det(A) = 1+-루트3 /2 이라고 되어 있으니 모순이고 그 경우는 불가능합니다.
풀이2에서도, (A+A^-1 를 간단히 X라고 할게요) X^2 = -E 이면 X= +-i E 인가요..? 예를 들어
X= (0 1
-1 0)
같은 행렬도 제곱하면 -E인데..
아하 계산을 떠나서 논리 자체가 모순이었었군요.
명쾌하게 해결되었습니다ㅎㅎ 감사합니다!
풀이 2에서 제곱의 det가 -1이니까 그냥 행렬의 det는 1이 되면 안되는것 같아요~~ 근데 행렬에서 i를 쓰는 경우는 못 봤는데..
그리고 제곱행렬의 디터미넌트가 음수가 될 수 있나요? 아마 성분이 실수이면 안되는거 같은데..
저는 그냥 해당 식을 만족하는 특정 A를 구하고 det를 역으로 끼워맞추고 있었군요;
아 이거 정말 기본적인 건데 이런 본질적인 실수를 하다니.. 전 이만 수1 복습하러 가겠습니다, 감사합니다!
아. 보니까 풀이 아래에 이미 Geonupark님이 질문을 달아놓으셨군요..ㅎㅎ
풀이1에서 의문은 '이차방정식 꼴로 나타내어져 있는 행렬식에서 근의 공식으로 kE꼴의 근을 구할 수 있는가'?
--> 그렇게 할 수는 없습니다. (다만 이차방정식 꼴 행렬 방정식을 풀 수는 있습니다. 아래에 댓글 달게요)
풀이2에서 의문은 '양변 제곱이 아닌 양변 제곱근이 가능한가'
--> 이것도 불가능합니다. 성립하지 않는 경우가 오히려 대부분입니다.
그러고 보니 아직 해결 안 된 의문들이 남아 있었군요!
풀이1의 의문은 해결이 되었는데, 풀이2의 의문은 아직 잘 모르겠습니다.
양변 제곱은 행렬 문제를 풀 때 자주 쓰곤 하는데 왜 제곱근은 안 되는 것인가요? ±둘 다 구하고 무연근(?)처럼 대입해서 한 개를 지우면 안 되나요?
그것도 마찬가지입니다. 아래에 제가 댓글로 달아놓은 방식처럼 풀어야 합니다.
X^2 =-E를 풀려면, 일단 케일리 해밀턴에 의한 식 X^2 - (a+d)X +(ad-bc)E = O이라고 두시고 변변 빼서
(a+d)X = (ad-bc-1)E 를 얻은 후
a+d=0인 경우와 그렇지 않은 경우로 나눠서 풀어야 합니다. (아래댓글처럼) 이 경우도 답은 무한히 많습니다.
한 예로,
( 0 a
-1/a 0 )
과 같이 a를 변화시켜가면서 얻은 무한히 많은 행렬이, 제곱하면 모두 -E가 됩니다.
따라서 이것만 보아도 X^2 = -E의 해X는 무한히 많게 됩니다.
X^2 =-E를 만족하는 행렬을 모두 표기하면 다음과 같습니다.
( a b
-(1+a^2)/b -a )
어이쿠.. 다항방정식같은 접근을 하면 절대 안 되겠네요..
대학가서 얼른 선형대수학을 배워야 겠어요ㅎㅎ
A^2 -(루트3)A+ E =0을 풀고 싶으시면 이렇게 해야 합니다.
행렬 A의 성분을 차례대로 a,b,c,d라 두시면, 케일리 해밀턴에 의해 A^2 -(a+d)A +(ad-bc)E = O
이 식과 윗 식을 변변 빼면
(a+d-루트3 )A = (ad-bc-1)E
(이렇게 해서 이차 방정식을 일차 방정식으로 바꾸는 것이지요)
(i) a+d=루트3 이라면, ad-bc=1입니다. 네 개의 문자가 2개의 조건을 만족하므로 이러한 실수a,b,c,d는 무한히 많습니다. 이러한 행렬들이 일단 모두 위 방정식의 해가 될 수 있습니다. 대각화(diagonalization)이라는 것이 있는데 대각화 하면 거의 유일한 형태로 표기 가능하긴 하나, 어쨋거나 무한히 많은 답이 있습니다.
(ii) a+d=루트3이 아니라면, 양변을 a+d-루트3으로 나눌 수 있고 그러면 A는 E의 상수배임을 얻습니다. 이 경우 A=kE로 두고(k 실수) 처음에 주어졌던 행렬의 이차방정식에 대입하며 풀면 됩니다. 즉, k^2 -(루트3)k +1 =0. 이걸 풀어서 나오는 k에 대해 kE 형태가 답입니다.
A + A^(-1) = 루트3E
이 식과
A^2 + E = 루트3A
이 식을 동치시키려면 어떤 조건을 추가해야 하나요? 아니면 동치 자체가 불가한가요?
두 식은 동치입니다.
A+ A^-1 = (루트3) E 의 양변에 A를 곱하면, A^2 +E = (루트3) A
반대방향은..
A^2 +E = (루트3) A 의 양변에 A^-1를 곱하면 A+ A^-1 = (루트3) E 이니까요.
(단, 반대방향에서 A의 역행렬이 존재한다는 것은,
조건식A^2 +E = (루트3) A --> A^2 - (루트3) A + E = O --> A((루트3) E - A) = E
로부터 알 수 있습니다. (루트3) E -A가 A랑 곱해서 E니까 A의 역행렬이지요)
와 이제 이해가 되었어요ㅎㅎ
정말 마지막 질문인데, 그렇다면 양변 제곱도 마찬가지로 불가한 것이었나요?
네 동치입니다. 제가 지금은 수업 가야 하는데 아무 때나 더 질문 올려놓으시면 빨리 답변 드릴게요~ (물론 제가 아는 한도 내에서..^^)