빡모2권1회나형 문제 2개만 풀어주세요...
게시글 주소: https://ui.orbi.kr/0003144278
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
으엉
-
애정하는 가수(natsumi) 모음집
-
궁금증 해결좀요 0
러셀은 바자관 다니는 사람 아니여도 돈 내면 수업을 들을 수 있잖아요 시대인재는...
-
23년 11덮
-
나눠주면 내일 나눠주려나…
-
화법 질문좀 0
타인이랑 대화할 때, 내가 질문했는데 상대도 질문하면 어떻게 해야해요? ex) 나:...
-
하...
-
영어 87-9만 계속 나오는데 시간 줄일만큼 줄인거라 더 못줄일거같은데 기도메타밖에...
-
얼버기 5
귀여운 코무기 보고가
-
에라이 9평 처럼 쉽게 나와라 그냥.. ㅋㅋㅋ
-
기상 6
수능까지 88시간
-
두껍아 두껍아 2
건대 줄게 설대 다오
-
오늘의 아침 3
해장국 원래 국밥 먹으려 했는데 어케 이 동네는 이 시간에 문 연 국밥집이 없냐 야발
-
지금 참전하면 1년만에 통합 1등급은 가능하겠죠?? 수능 공부는 뒤에 거의...
-
자료는 있기는 함 남은 기간 동안 40p 다 외워야지
-
아 늦잠잤다 0
수능때 이럼 어카지 ㅜㅜ
-
2번 문젠데 ㄱ선지에서 엘리아데 입장에서 종교란 자연물에 드러나는 초월적 존재를...
-
짝수형 1
짝수형이면 국어 한 번호로 밀때 몇 번으로 미는게 좋을까요..?!
-
나힐순없는지
-
27번 왜 답이 2번인지 이유를 모르겠네 4번 선지에 망상 구조의 견고함은 압력이랑...
-
생명은 실모치면 찍맞포함..해서 잘하면 1 못해도 2는 뜨는데 지구는 실모치면...
-
ㅅㅂ
-
얼버기 3
-
학교 옮기고 싶어서 다시 참전할까 고민중인데요 제가 할땐 투과먹이 원과목보다 미친...
-
이젠 숫자만 보면 1557 각을 보게 되네 1557 라이브로 봤을 때는 진짜...
-
원래 천원 아니였냐 한줄에....
-
난 이감모의 매체가 이만큼 치졸한 지 몰랐지 .. :< 10
여기서 ‘꼭‘이 나트륨 섭취해야 하는 이유를 강조하기 위해 사용되었다. (O, X)
-
먹어본 사람 있음?
-
공부를 안해봐서 공부가 얼마나 힘든지 모르나
-
스카 가는 중 0
수능 일주일 전에 정신 차린 나란 인간 ㅠㅠ
-
수능 연기 가능성 있나 ? 나라가 이래저래 왜이러누...ㅠ
-
헉
-
지거국에서 국숭상가로 옮기는 건 다운그레이드인가요? 4
옮긴다면 지거국 비상경 인문에서 국숭상가 비상경 인문으로 가게 될 것 같습니다 집...
-
학교생활 적응에 실패해서 도피성으로 2학기 휴학하고 반수 들어갔는데 도피성이라...
-
신석열의 의료계 정싱화로 인해 입결이 얼마나 떨어질지 ?!
-
덕통사고 당햇다 0
https://youtu.be/8cWaddesKD4?si=n4bc7QQr8STmh6gm 지떠여니
-
알텍 킬러 0
미적 알텍에는 킬러 문항 아직 안빠졌나요?
-
1일 2실모하고 수능날 1 받아올게
-
고1-고2 10모 항상 2떳는데 신성규쌤 신기해 수1,수2 들어도 괜찮을까요?...
-
국어 실모 0
무조건 8시40분터 푸시나요??? 낼 11시반부터 국어실모 풀듯한데
-
탐구제외 하던거 반복해서 ㅈㄴ 지겨울듯
-
뭐하고 계심
-
최저 과목 선택 0
친구가 4년만에 수능판 다시 들어와서 2026수능으로 최저 맞춰서 대학 옮기려고 함...
-
하 진짜 1컷 50 50 50 쳐만들면.. ㅋㅋ 실수하는순간 인생이 망하는데
-
Whale. 0
I will shine the way for you Dont let me drift away
-
작수물리 16번 중성자 헬륨질량 더 큰거 어케알아요? 2
그럴거같긴한데 물리 개념배울때 배우나.?
-
늦잠 자버림 오늘 일어나서부터 수학 지구 한국사 마무리하고 남은 3일 모의고사 +...
-
으흐흐흐 10
일루와잇!!!!!
-
1등급 비율 2.3퍼 말이 됨? ㅋㅋㅋㅋㅋ 솔직하게 수능에 내도 어렵다 소리 나올 거 같은데 ㅌㅋㅌ
행렬은 왠지 지난 번에도 누군가 올렸던 거 같은..
ㄱ. XY=E 라 합시다. (A^-1 X B^-1 ) (BYA) = A^-1 X Y A = A^-1 A = E 이므로, BYA가 역행렬. 따라서 존재.
ㄴ. 좌 = A^-1 (A+B) B^-1 = (E + A^-1 B) B^-1 = B^-1 +A^-1. 마찬가지로 우변 계산해보면 동일함.
ㄷ. ㄱ에 X=A+B 대입해보면 참임을 알 수 있음. ㄱ,ㄴ,ㄷ 모두 참.
아래문제.
ㄱ. (미분가능함수인) g(x)는 그 도함수인 f(x)값이 0이면서 + -> -로 변하는 곳에서 극대. 문제의 f(x)그래프로부터 g(x)가 x=1에서 극대임을 알 수 있음.
ㄴ. f의 그래프에서 x절편(1,0)을 A, y절편을 B라 하고, (1, f(0))을 점C라 할게요.
g(1)은 그림에서 0~1까지 그래프f(x) 아래쪽(x축 위쪽)에 있는 영역의 넓이이므로
삼각형OAB넓이보다는 크고, 직사각형OACB넓이보다는 작음.
삼각형OAB넓이=f(0)*1/2, 직사각형OACB넓이=f(0)*1. 따라서 참.
ㄷ. 분명 f(x) g(x) < f(0)x (x=0제외)
이 식의 양변을 다시 x에 대해 적분하면 (0,1)에서 적분 g(x) dx < (0,1)에서 적분 f(0) x dx = f(0)/2. 따라서 참. ㄱ,ㄴ,ㄷ 모두 참.
아래문제 ㄷ번풀이는 직접 생각해내신거에요??
행렬문제 ㄷ번 잘 이해가 안가요....
넵.. 혹시 답에도 똑같이 있나요? 왠지 그럴 가능성도 클 거 같고요..ㅎㅎ
위에 ㄷ은 ㄱ이용하면 되는데, ㄱ에다가 X=A+B대입하면
A+B의 역행렬이 존재하면, A^-1 (A+B) B^-1 의 역행렬도 존재! 라는 명제를 얻습니다. 그런데 A^-1 (A+B) B^-1 = (E+ A^-1 B) B^-1= B^-1 +A^-1이니까, B^-1 + A^-1 의 역행렬도 존재한다는 것과 동치이지요. 그래서 ㄷ참이고요.
위에문제 엄청간단하게풀어드림
ㄱ은 세행렬 각각역행렬존재하므로참
ㄴ은 전개해보면 참
ㄷ은 ㄴ을이용 일단 좌변 전개하면 A역+B역 이나옴(폰이라서양해좀요)
ㄷ의전제때문에 우변이 역행렬존재함을알수있음 그러므로 ㄷ도참
감사합니다...이해됐어요!
아래문제 ㄴ은... 도형의 넓이 비교로 생각해주세요
1/2f(0)은 높이f(0), 밑변 1인 삼각형의 넓이
g(1)은 (0,1)범위에서의 f(x)의 적분값
f(0)은 높이 f(0),밑변1인 사각형의넓이
주어진 그림에 직접 그려보시면 이해가 빠르실거예요
ㄷ은... g(x)의 그래프를 이용해서 ㄴ과 비슷한 식으로
1/2f(0)은...
g(x)에서 x에 접하는 직선의방정식을 그리구요 y=f(0)x 이런식으로 나올겁니다
저 방정식은(1.f(0)) 을 지나겠죠?
밑변1, 높이f(0)인 삼각형의넓이가 바로 1/2f(0)이네요...
그러니 왼쪽에 주어진 적분값과 그 삼각형의 넓이를 비교해보시면 되요
기출에서 봤던 논리 같은데 찾아보려하니 어디에 있는지 못찾겠네요 ㅎㅎ;;;
2009년이엇던거 같아요. 감사합니다