2012학년도 수능 수리가형 21번문제 풀이 좀 깔끔한거 없나요?
게시글 주소: https://ui.orbi.kr/0003139868
메가스터디에서 기출 풀이해주는거랑 입시플라이기출문제집풀이나 인터넷 돌아다니는 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옥루몽, 옥린몽 <<<< 얘네만 자꾸 초기화됨 진짜 뭐 문제있냐
-
사수 2
-
구거 어떡해 3
시간이 부족해
-
다양한종류의 방파제에 대해 더 알고 싶으신 분들은 00누리집에 방문해 관련정보를...
-
뭔소린지 하나도 모르긋네~
-
올해 6평 9평 작수 분석한거 한번에 들고다니고싶었는데 역시 센스쟁이셔~~
-
아니 갑자기 고어물을 실어요
-
휴지로 코 막고 마스크 쓸까 약 먹을까
-
문제에ㅡ그냥 발광다이오드라고 나오면 방향 따져야 하죠?
-
올해 게임이론 지문 나온다면 보기문제는 계산을 물어보겠지? 0
게임이론 지문이 나온다면 혼합 전략내시균형 반드시 나올텐데 그럼 보기문제는 반드시...
-
사랑했지만 2
그대를 사랑했지만~
-
문잘싶광울 3
전직 문학소녀였는데..
-
화잘싶광울 0
하학 이번엔 1등급좀..
-
수잘싶광울 4
수학 잘하고 싶다
-
국잘싶광울 4
요새느끼는거지만 ㄹㅇ 존나못하는듯
-
얼마나 추우려나 모르겠네요 2025학년도 수능 입시 성공 대박 대학 합격 옷 날씨...
-
음? 3
알림이 자는사이에 200개가 넘게왔네 뭔일잇엇나..
-
이거 맞음? 아니겠지..? 알려주세요ㅠㅠ
-
오밐추 6
굿모닝
-
no pain 2
No gain
-
독서 7 문학 18 22 33 언매 40 총 5문제 틀림 독서는 쉽게 나온듯 문학은...
-
저...격해요 6
-
이제 와서는 국어 탐구 빼고는 해도 위로는 안바뀜 근데 안하면 아래로는 바뀜 ㅇㅇ
-
재수하면서 정말 힘들었고 많은 일들이 있었는데 이제 독서실에서 인강 보면서 큭큭댈...
-
두명이 탈릅했나 5
팔로워 팔로잉 둘다 2명씩 줄었네
-
이번주 학원에서 더프 보는 거 얼마 전에 신청했는데 막상 이번주 되니까 실모 많이...
-
지듣노 1
Jazzyfact - Let's Love
-
26수능 대비 메가패스 양도해요 댓글 달아주시거나 쪽지주세요
-
계속 미루다가 결국엔 늦어
-
지2황들 컴 1
남은 10일간 폴라N제/올해 실모/실문풀 (하루에 지2 4시간박음) 하면...
-
얼버기 6
피곤해디짐
-
일단 15 22 28 30 버린 뒤, 나머지 다 풀고 시간 남으면 건드린다는...
-
걍 수험표 뒤에 벅벅 쓰는 거 되죠? 이건 감독관한테 말 안하고 해도 되잖어
-
참고로 7시 50분까지 가야함 궁금궁금
-
사문 도표 0
2개월 전에 mskill 완강하고 복습과제집은 아직 못풀었는데요.. 도표만 보면...
-
ㅈㄱㄴ
-
어떤 의대생은 내신 전교1등까지 했으면서 노베에서 1년만에 의대갔다고 하질 않나...
-
일찍기상 10
그거 어떻게 하는건데...전 이제 집 나가는중 다른 독서실 다니는 친구랑...
-
그냥 수험표 뒤에 붙여서 책상 위에 두고 omr 마킹 끝난 다음에 죽죽 따라 적으면 되나요??
-
작년처럼 비오지 말아주세요….. 제바류류류ㅜㅜㅠㅜㅠㅠㅠ
-
1. 수능 3주 전임에도 운동장 공사로 학교 전체가 진동함 2. 심지어 공사를...
-
어릴땐 1
눈물이 진짜 많았는데 이젠 진짜 인생이 망해서 그런가 눈물도 안나옴
-
올 5,6,7등급에서 평균 3까지 올린거면 많이 오른건가 8
1년의 결관디... 오르비에서 1,2까지 수직상승한 사람들을 봐서 별로 안오른 기분이야
-
학교 정보시간에 몰래하기
-
불문학은 관심없고 일단 물독서 원하면 개추 ㅋㅋ
-
수시러라 최저만 맞추면 되는데 국어는 2~3 영어는 1 수학은 3~4 나오는데 괜히...
-
수학은 이제와서 실모 외에는 더 한다고 점수 바꾸기 글렀고 실수만 좀 잡아야할듯...
-
지금까지 했던 생글생감, 기테마 복습하는게 더 ㄱㅊ겠죠
전 작년에 저렇게 풀엇는데...
작년에 신승범쌤이 저런유형 나올거같다고 수해에서 강조해주셧슴 ㅇㅅㅇ
이거 얼마 전에도 어떤 분이 질문 올려서 누군가가 친절하게 대답해준 글이 있어요. 제 의견으로도 법선벡터로 푸는 게 가장 깔끔하고 직관적으로 들어오는 것 같습니다. 문제에 등장하는 면이 3개인데요, 그 중 두 개는 고정되어 있고, ABC 포함하는 면이 유동적이라고 볼 수 있겠지요.
ABC면적은 고정되어 있으니, ABC면과 면x-2y+2z=1 사이의 각도가 최소일 때를 묻는 문제이고요, 따라서 두 면의 법선벡터 사이 각도가 최소면 됩니다.
글로 읽으시면 헷갈릴 수도 있을테니 공간좌표에다가 그리면서 생각해보세요. yz평면의 법선벡터(1,0,0) 그려보시고요, ABC의 법선벡터는 (1,0,0)과 60도 각도를 이루어야 하니, 원점을 시점으로 ABC의 법선벡터를 그려보면 x축을 축으로 하고 원점을 꼭짓점으로 하는 원뿔의 밑면의 원주 위를 빙빙 도는 모양이 될거구요. 이 중 (1,-2,2)라는 법선벡터와 가장 각도가 작아질 때가 언젠지 보면 직관적으로 당연히 세 법선벡터가 한 평면 내에 있는 경우 중(2가지 경우인데, 그 중 하나이겠지요.)에서 일어나게 됩니다. 이 정도면 충분히 직관적이지 않나요..?
따라서 그 최소일 경우의 각도를 t라 하면, t = s-60도 (단, s는 (1,0,0)과 (1,-2,2)가 이루는 예각. cos s = 1/3)
cos t = cos s cos 60 + sin s sin 60 = (1/3) (1/2) + (루트8)/3 (루트3)/2 = (1+2루트6)/6
답은 1+2루트6. 이렇게요.
오 그러네요.. 감사합니다^^
x-2y+2z=1의 법선벡터 v1=(1,2,2)와 yz평면의 법선벡터 e=(1,0,0)은 고정되어 있습니다. 여기에 삼각형 ABC를 포함하는 평면의 법선벡터를 v2벡터라고 하면, 결국 원하는 정사영의 넓이의 최댓값은 v1벡터와 v2벡터가 이루는 각이 최대소일 때가 됩니다. 따라서 e벡터와 v1벡터, v2벡터를 시점을 일치시킨 후 v2벡터를 (v2벡터의 크기는 고정하고 각을 변화시키면 v2벡터는 e벡터를 포함하는 원뿔의 흔적을 남게게 됩니다. (나) 조건 때문에 v2, e벡터의 각은 일정)
따라서 v1벡터, v2벡터가 이루는 각이 최소가 되려면 e벡터와 v1벡터가 포함된 평면에 v2벡터가 놓여 있어야함을 알 수 있겠습니다.
감사합니다^^
저두 실제 시험장에선 법선벡터 두개로 비교해서
두 평면이 이루는 각 구하는 공식에 두 법선벡터 대입하고
잘 비비니까 보기에서 답이 될수 있는게 2(루트6)+1 밖에 없어서
겨우 풀었었네요 ㅋㅋ
그냥 삼각형이있는 평면 법선벡터를 (1,a,b)로 놓고푸시면 어처피 벡터비로푸는거니까 그냥 계산으로 나옵니다
아 이 풀이도 말씀드리려 했는데 까먹었네요.. 이렇게 풀어도 간단하지요. (고맙습니다..ㅎ)
(1,a,b) 랑 (1,0,0) 이루는 각도 60도니까 a^2 +b^2 =3 나오고요, 이 때
(1,a,b) 랑 (1,-2,2)가 이루는 각도의 cos값인 (1-2a+2b)/6의 최댓값을 구하는 문제니까,
다시 쓰면, a^2 +b^2 =3 일 때, (b-a)의 최댓값 구하는 문제입니다. 반지름 루트3인 원에서 기울기 1인 접선 그어보면 최댓값이 루트6 인 거 바로 나오지요. b-a=루트6 대입하면 cos최댓값이 (1+2루트6)/6 이라서 문제의 답을 얻습니다.
참고. 삼각형의 법선벡터가 (0,a,b)인 경우도 따져줘야 엄밀하긴 한데 결국 이 경우는 필요없습니다.
코시슈바르츠 부등식 말고 삼각치환 해보세요 그게 아마 출제의도 같네요
아니면 벡터의 내적이나 원과 접선 둘다 이용가능
작년 셤장에서 그냥 무식하고도 단순하게 푼것같네요...ㅠㅠ
삼각형 ABC와 yz평면이 이루는 예각의 크기는 60도이고
(1,-2,2) (1,0,0)이 이루는 각의 크기를 b라 놓을 때 cosb는 3분의1이 되죠..
삼각형 ABC와 평면 x-2y-2z=1이 이루는 각의 크기는 b+60 혹은 b-60이 되는데
정사영의 넓이가 최대가 되려면 예각 크기가 최소가 되어야 하므로
b-60이 되고...
6cos(b-60)을 구하면 답이 나오죠