킬러분석의 혁명, 여기, 지금,
게시글 주소: https://ui.orbi.kr/00030078211
김지석 자작
킬러문제 자료
지웠음 -210418
대충 만들지 않았습니다.
좋아요와 팔로우와 댓글은
사랑입니다.
사랑은 지석t에게 고퀄자료를 만들게 합니다.
매주 공개! 1주 1킬러! 다같이 야호!
메인메인메인!
장담합니다. 진지.
이 문제 보다 좋은 문제는 없습니다.
(나랑 같이 가봅시다!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
허리부러질라 굿 0
판에서 날이 시퍼런 작 두위를 걷 작 두위를 걷
-
홍대 출신이 가장 많네 이게 홍건인가…
-
내년에 공부 운동 밖에 안할거임
-
춥네... 5
감기조심하세요
-
잘맞는 와이프랑 둘이 알콩달콩하게 사는게 꿈이야
-
군까지 지랄이네
-
쓰는게 맞을까요ㅜㅠ 어제는 5칸 떴어요.... 어떻게 생각하시나요 다들... 참고로...
-
서강 전전vs 화공 둘다 6,7칸 뭐가 괜찮음?
-
맞팔구 1
나도 200 찍어볼랭 부탁드려용 ㅠㅠ
-
일단 1과목은 사문 확정이고 한지세지 둘중하나 선택하려 하는데 뭐를 더...
-
T1) 티원 최고 허벅지 | T1 파리(?) 생존기 0
요즘 열일해서 어색함
-
몇판 안할꺼임
-
텔그 냥대 0
텔그 냥대 저만 좀 짠것같나요? 진학사에서는 7칸에 가까운 6칸인데 텔그는...
-
강민철 커리큘럼 0
고3올라가는데 메가패스끊음 근데 강민철 나온 커리큘럼처럼 강기본먼저 들으면 되나?...
-
지금도 살수있나 표본분석하는데 있으면 편할것같아서
-
강기분도 삿음
-
평가원에선 사용된 적 없지만, 사설에선 은근 사용된 삼각함수 아이디어 2
구간 [-2,2] 에서 방정식 의 실근의 개수를 구하시오.
-
작년에 비해 왜케 적죠...? 서성한 밑은 안적은거 같은데 스카이 공대쪽이에요
-
수학2 자작문제 3
요즘은 한물 간 합답형 문제.. 그래도 배워갈 점은 있습니다!
-
다하는게 불가능할거같아서 버릴것 추천도요 국어-강기분(문학,독서) 영어-마더텅...
-
ㅈㄱㄴ
-
뭐 있을까요? 공부? 운전면허? 할게 없어서 심심해요..
-
고대 이월 내놔 5
-
수시 반영 정시 3
정시에서 내신성적으로 교과평가 들어가는 것 처럼 수시 반영하는 정시전형 어디대학교...
-
이원준T 후기 0
나는 저능하다
-
보수집결체 서초구ㅋㅋ
-
앞쪽에 사람들이 워낙 많으니 분석하기는 에바인 것 같고
-
오겜2 소신발언 2
마무리가 조금 아쉬웠지만 노잼 수준까진 아니였음
-
해병대 지원해서 해병대 에서 군수할거 같습니다. N수의 신 OR 헬스터디에서 뵙겠습니다.
-
보통 어디들 가나요 오르비기준x
-
공통과목에서 난도차가 나는건지 확통도 나형보단 어렵게 내서 컷이 내려간건가요?
-
흑흑 10
엉어엉
-
정시 재수 공부 언제부터 시작하실겅에요?
-
자전 폭 0
올해 신설된 자전은 빵보다는 폭 날 확률이 더 높죠?
-
아주 vs 숭실 3
둘 다 자전 -> 전자공 선택할거임 하나 골라야되는데 전자갈거면 아주가 나을까요??...
-
확인하면 바로 글삭 할 테니까 댓글 좀 부탁드립니다..
-
50여명이 HASS인거 감안하면 더더욱 어차피 올해 관전 포인트는 메디컬 이월이라 괜찮을수도 있고
-
지1 끼고 갈건데 3목표면 생1이 베스트임??
-
그냥 쌍사를 해버릴까 11
그 똥 말고 진짜 과목을.. 사문동사보다는 쌍사가 나을라나
-
할 게 없네
-
예비고3 현우진 3
고2때 수학이 369모로 343 백분 85 71 86 나왔습니다 학원 일주일에...
-
뭐라도해야하는데
-
평소에 상경계 쪽을 생각해오긴했는데 연고대 상경을 쓰기엔 진학사로 3, 4칸...
-
엉엉
-
16 실물 걍 장난감같음 하나도안예쁨 하 6.7.8이 진짜이뻣는데
-
지구과학 몰라 응애
-
1인실이 날까요 다인실이 날까요? 1인실쓰면 좀 외로울 것 같기도 한데..
이정도 자료는 묶어서 킬러대비 인강으로 하셔도 손색 없으실 것들인데 나눠주시다니....
다음 1주 1킬러도 기대하셔도 좋습니다! 킬러도 김지석! 야호!
좋은 자료 감사합니다
네넹! 1주 1킬러 꼬박꼬박 챙기면 수능날 킬러도 거뜬합니당!
오 ㄱㅅㄱㅅ
문제 퀄리티랑,, 해설지랑,, 둘 다 그냥 다 미쳐따............스텝바이스텝 해설지......감사합니다 ㅠㅠㅠ 이런자료 올려주셔서 ㅠㅠㅠㅠㅠㅠㅠㅠ
와 나형은 없나요 흑ㅜㅜ
우와아아아앙 갓지석!! 근데 이건 언제까지 올리실 계획이십니까
7월 중순까지 예정입니다~
선생님 꼭 대성하실겁니다
유용하게 쓰길 바라요!
자료 감사합니다
우왕 강연회 오셨던 분이군요! 남은 200일도 화이팅해서 꼭 대박냅시당~ 아자!
열심히 공부할게요! ㅠㅠ 류
이런거 진짜 좋아요!!! 앞으로 기대되는 컨텐츠이네요 ㅎㅎ
1000번 째 팔로우 ㅎㅎ
선생님 09교과과정 배운 문과생도 풀수있는거죠??
아니요 문과생은 풀수없습니다^^;; 내일모레 나형도 올라갈거예요~
앗 감사합니다
1주 1킬러!
좋은 컨텐츠 감사합니다!!
오르비식 허수이과.....팔로우 박았읍니다
저기 나온 사람이 저는 아니겠죠.... 따라갈게요 열심히
함께 대박을 이뤄봐요!
나형두 해주세요 ㅠㅠ
감사합니다 ㅎㅎ
그저 빛...
엥 수열 밑에 자연수가 아닌 걸 넣는 방식이 교과서에 있던가요
표현이 다소 낯설게 느껴지셨나 보네요~^^
aₙ 은 '등차수열'로 지칭해서 말씀하신대로 n=1,2, .. 자연수로 되어있습니다.
그러나 Tₙ은 수열로 지칭하지 않았고(넓은 의미로 수열로 해석할 수 있겠지만)
문제에서 '명료히 규정한 새로운 기호'라 꼭 아래첨자가 자연수일 필요는 없습니다.
(애초에 Sₙ이 아니니 수열 범위로 제약되지 않습니다.
Tₙ은 문제에서 새롭게 제시하는 '함수'라고 보셔야 합니다.)
물론 기호를 처음부터 Tₙ₊₂로 규정해도 간단히 교정할 수 있으나
계산을 깔끔하게 하기 위해 연구진들과 논의 끝에
Tₙ으로 하는 것이 최적화된 표현이라는 결론을 내렸습니다.
(애초에 정수일 경우는 모두 Tₙ=0이라 정수파트를 이용해 계산할 일도 없고요.)
이런 기호 사용은 [교과서]에서도 찾아볼 수 있습니다.
바로 <정적분과 급수(구분구적법)>에서
구간 [a, b]를 n등분할 때, 각 구간의 끝점을
a=x₀, x₁, x₂, …, xₖ, …, xₙ₋₁, xₙ=b
로 지칭한 부분입니다.
xₖ의 아래 첨자를 자연수 1로 시작하지 않고 정수 0으로 시작한 것이지요.
이는 n번째 구간 마지막 기호가 xₙ₊₁보다는 xₙ인게 깔끔한 표현이라는
교과서 집필 교수님들의 판단이 있었겠지요.
즉 교과서에서 명료하고 깔끔한 표현을 위해서라면
아래 첨자를 자연수 범위를 넘어서 정수로 사용했다는 취지를 엿볼 수 있습니다.
이 문제도 그 취지에 맞춰서 표현을 구성한 것입니다.
안심하세요. 믿고 공부하셔도 좋습니다. :)
정성스러운 답변 감사드립니다 :)
해설 퀄리티 오져따~~
선생님 진짜.... 진짜 감사합니다 ㅠㅠ 노미가 아니더라도 선생님 구독하길 너무 너무 잘햇다구 생각해요 ㅜㅜ...
161130b랑 170630이랑 비슷한 문제인가요?
구간에서 주어진 함수을 통해서 다른 구간을 추론하는게 핵심이라고 생각해서 위에 두 문제랑 비슷하다고 생각했는데 어떻게 생각하세요 혹시?ㅠㅠ
구하는 함수 G는 (a.b)에서 잘 정의된 함수 f이고 연속, 이를 통해서 이동된 구간에서도 f로 나타낼수 있다
이런 느낌이요!
쪽지로 질문이 왔는데 참고가 다들 공부하시는데 참고가 될까하여 붙입니다.
Q.
해설3쪽에 g(x)그래프와 4쪽에 g(x)그래프의 형태가 왜달라진걸까요..?
A.
3쪽에서는 문제의 모든 조건에 맞는
g(x)의 그래프의 개형이 아니라
‘연속함수 g(x)’라는 조건을 고려하지 않고
g(Tₙ₋₁+x)=f(6/aₙ x)+g(Tₙ₋₂)
만 고려했을 때의
g(x)의 그래프가 될 수 있는 것의
‘예시’를 하나 그린 것입니다.
‘연속함수 g(x)’과 ‘g(Tₙ₋₁+x)=f(6/aₙ x)+g(Tₙ₋₂)’을 한꺼번에 고려하면
해설을 이해하기 어려울 수 있어서 일부러 나눠 놓은 것입니다.
g(Tₙ₋₁+x)=f(6/aₙ x)+g(Tₙ₋₂)
조건만으로는 g(x)가 꼭 연속이라는 보장이 없고
연속이 되는 건 아주 특수한 경우라
위 식의 특징을 잘 보여준다고 할 수 없기 때문이지요.
그리고 ‘연속함수 g(x)’ 조건을 고려하면
4쪽과 같은 그래프 개형이 되어야 하는 것입니다^^
수능때까지 매주 1문제씩 배포하실 계획이신가요?
2달간 진행할 예정입니다^^
감사합니다!
선셍님 원래 이렇게 어려운걸까요ㅜㅜㅜㅠ
g(x) 개형그리는것까진 혼자 힘으로 했는데
이후 대칭성을 떠올린다거나 하는건 하지 못했네요
일주일동안 밤마다 삼사십분정도 시간을 쓰려고 하는데
매일 고민해본 뒤에 해설 한줄씩 보고 부정적분은 대입해봐야지!! // 적분인데 대칭성이 껴있네?? //
처럼 하나하나 반응을 익히는 방식으로 진행하는 게 선생님이 (나 1회)본문에서 언급하신 방법이 맞나요?? ㅎㅎ...
++++
사실 수학 고득점자는 아니지만...
공부를 열심히 해서 언젠간 킬러 문제도 시험장에서 풀어보고 싶은 마음에 열심히 도전중입니다만
음...킬러 공부할 시간에 나머지 문제를 공부해서 안정적으로 풀어내라 라는 말도 들리구요..
킬러는 꾸준히 공부해주는게 좋을지 다른분들 말씀처럼 '여유가 되면' 공부할 주제인지도 여쭙고 싶습니다!!
올해 킬러 공부의 가닥을 아직 잡지 못해서요...ㅜ.ㅜ
넹... 많이 어려운 문제입니다~
그래도 g(x)그래프 그린 것 만으로도 정말 훌륭해요.
거기까지만 해도 70%는 해결한 것과 다름없어요.
제가 해설지에서 써둔 '생각하는 방법' (연한 갈색으로 쓴 것들)을 곱씹어 읽으면서
생각하는 방법을 터득해나가면 킬러도 점점 정복해나갈 수 있어요.
킬러 공부 계획을 짜는 것에 대해서 말씀드리자면
4등급 이하라면 킬러 건들지말고
나머지 것들을 집중적으로 하는 것이 좋습니다.
괜히 킬러 건드렸다가 시간만 흥청망청 날라가고
공부 효율이 떨어지거든요.
3등급이면 대부분의 시간을
킬러가 아닌 나머지 것들을 공부하는데 시간을 쓰되
1주1킬러 하는 정도로 약간씩 킬러를 하는 것이 좋습니다.
킬러 아닌 것들만 하다보면 생각을 깊이있게 안하고
기계적인 풀이만 익히게 되서
근본적인 수학적 사고력이 잘 안길러지거든요.
킬러를 약간은 병행해야 깊이있게 생각하는 생각의 힘이 길러집니다.
2등급이면 킬러 절반 비킬러 절반 정도가 적당하고
1등급이면 킬러 위주로만 하시면 되고요.
이 정도 느낌으로 공부 비율을 설정하시면 될 것 같아요.
3등급 현역 일킬러시리즈 열심히 따라가겠습니다!!