확률변수??.. (수리문제질문입니다.)
게시글 주소: https://ui.orbi.kr/0003002525
엘의 후계자님이 만드신
도대체 Y = 2X로 하는게 무슨뜻인가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3 훈수 1
겨울방학 동안 몇과목 빡세게 집중해서 하기 vs 전과목 다 하기 13일동안 거의...
-
안녕하세요. 저는 공군 상병으로 현역 복무중인 03년생입니다. 특정되는거 감수하고...
-
자녀에 대해 다 안다고 생각하는 학부모 이건 답도 없다
-
문과에서 살아남기 1 43
안녕하세요, 한달뒤는입니다. 문과가면 큰일나는 것 같은 요즘 분위기에서 인문계...
-
요즘 12시에 일어나서 나한텐 지금이 점심임
-
대기업도 보면 임원진들은 남자가 대부분이던데 물론 4050 여자들은 애 키운다고...
-
운동화 신어도 됨?????????? 남색 나이키 운동화
-
어느정도 갈 수 있을까요...?? 언매/미적/화생 입니다! 영어 1 한국사 3이요...
-
공대기준 + 가천대 신소재는 낮공인가요? 차라리 삼수해서 광운이 날까요?
-
펜션에서 첫날밤 2
너무일찍깸.. 춥다ㅏ
-
현역때 76점 받고 멘붕왔던게 엊그제 같은데 벌써 2년전이네요 다항함수 비율비가 잘...
-
애니드라마유튜브생방등 시간길고재밋는거 ㅊㅊ좀
-
미적이랑 생윤 못하고 지구만 2등급인데 확통 지구 사문 확통 한지 사문 중에 뭐가 괜찮을거같아
-
점공 22등 3
29명 모집 추합은 당연히 없고 1차 합격 점공률은 60%이상 합격 가능할까
-
현역 평백 79.8 국숭 낮과 재수 평백 94.3 성대 자과계 평소 더프 보던것보다...
-
기차지나간당 8
부지런행
-
새르비 오랜만 1
ㄹㅇ 찐 새르비네 리젠이 아예...
-
전 우울할 땐 그냥 앱을 삭제해버림뇨 아예 안 들어옴 장점은 그 누구에게도 민폐...
-
발표가 뜬다
-
건강하새오
-
공수2-2 4
틀린거 있으면 말해주세용
-
.
-
(딸깍딸깍 세계시각을 켜고) 런던 거주중입니다
-
탈릅. 5
형 간다.
-
특히 조정식이.. 나라도 방송 나가면 저렇게 할 거 같은데 해석 어버버거리는 걸로...
-
25수능 생2 12번 해설; 정석적인 풀이방향은 ㄱㄴㄷ대로...? 6
ㅅㅂ 이렇게 풀기를 원하면 시험시간은 50분으로 해줘야지 다시 풀어보니까 못해먹을거...
-
질문 받음 실제로 본 거임
-
데쌍트 롯데리아 곤트란쉐리에 (노브랜드 버거->노브랜드 피자) 타코벨 카페...
-
최근 기출만 선별해서 풀거면 장영진t 기출봐도 될듯? 1
그냥 책 한권 pdf로 뿌리시네
-
국어: 수특 수완 검더텅 각 2회독 -> 1등급 영어: 수특 수완 EBS파이널...
-
노대 인문 어때요? 18
장학 왜케 맛있음 ㄹㅇ 목시 컷 오를 거 같아서 그냥 노대 갈까 싶은데 어떰뇨?
-
기하나 미적 하는게 낫나요? 지금은 문과라… 수학을 이과쪽으로 하고 사탐을 해도...
-
내인생계획 7
군대에서행정고시준비하기 일초에피셋합격 상초에2차합격 병장때최종합격 법률저널 인터뷰:...
-
공수2-1 8
매일마다는 아니어도 조금씩이라도 올리겠음
-
기원이 문제량 적다는 얘기가 있다하던데 상방 뚫기 용으로 강기원만한게 없나 반면...
-
말로 형용할수없을듯....
-
성인기념? 입학기념? 으로 지갑 팔찌 신발 가디건 목걸이 해서 740만원정도썼어욤...
-
수학뺴고다물어보셈
-
대학생분들 2
목표가 있나요?
-
오르비에 공유(?)해주실분
-
얘전에 봉사할때 정말 많아야 30정도? 눈으로 봤을땐 25정도 이지 않을까 하는...
-
ㅇㅈㅎㅈㅅㅇ 1
ㅇㅈ ㄱ
-
이러면 곧 키배터지나?
-
샤인미 N제 vs 한석원 4규 시즌2 기존 풀던 드릴/드릴드 끝나가서 풀어볼까...
-
26도 받으러 가야겠다 가서 국,수만 치고 나와서 점심먹어야지
-
근데그러면님들이싫어할거같애서
-
큰일이네 2
요즘너무늦게자는듯
-
아빠생일선물삿음 8
케이스도사고 삼케플까지들엇어 미역국도끓일거야
-
래브라도 리트리버 (?) 짱 귀여움
확률변수는 각각의 근원사건마다 어떤 값을 대응시키는 함수입니다.
로또 복권을 예로 들자면, 45C6개의 가능한 번호 조합 각각마다 그 번호에 대한 상금을 대응시키는 함수도 확률 변수가 되겠지요.
따라서 Y = 2X라는 식은 말 그대로 함수에 2배를 해 준 것에 불과합니다. (이런 측면에서, 사실 주어진 문제에서 X의 정의역은 [0,1]인데 반해 Y의 정의역이 [0,2]인 것은 굉장히 어색하고 이상한 상황입니다. 함수에 2배를 했을 뿐인데 정의역이 바뀌면, 그건 정말로 이상한 것이지요.)
이때 우리는 이 확률 변수가 특정한 값을 가질 확률 혹은 특정한 범위의 값들을 가질 확률을 계산할 수 있습니다. 특별히, 주어진 확률변수가 연속확률변수이면 누적분포함수 P(X<=x)의 미분인
d/dx P(X<=x)
를 생각할 수 있는데, 바로 이 함수가 X의 확률밀도함수입니다. 따라서 주어진 문제의 경우
g(x)
= d/dx P(Y<=x)
= d/dx P(2X<=x)
= d/dx P(X<=x/2)
= (1/2)f(x/2)
가 성립합니다. 단, 마지막 줄은 합성함수 미분 공식을 사용하였습니다. (P(X<=x)의 미분이 f(x)니까요.)
그리고 노파심에 추가로 말씀드리고 싶은 것은, X의 정의역이 [0, 1]이라고 해서 확률밀도함수의 정의역이 [0, 1]이 될 이유가 없다는 것입니다. 사실 정의에서 볼 수 있듯이, 확률밀도함수의 정의역은 항상 실수 전체입니다. 따라서 ㄱ같은 경우 당연하게도 일반적으로 거짓입니다.
출제자로서 저의 의도를 말씀드리겠습니다.
문제에서
정의역이 [0,1]이라고 말한 것은 연속확률변수 X가 0<= X <= 1 의 범위에 해당하는 값을 가진다는 의미이고
정의역이 [0, 2]라고 말한 것은 연속확률변수 Y가 0<= Y <= 2 의 범위에 해당하는 값을 가진다는 의미입니다.
또한
연속확률변수 X는 0부터 1까지를 값으로 가지기 때문에
0부터 1까지 f(x)를 적분하면 1의 값을 가집니다.
마찬가지로 연속확률변수 Y는 0부터 2까지를 값으로 가지기 때문에 0부터 2까지 g(x)를 적분하면 1의 값을 가지고요.
따라서 ㄱ 같은 경우 당연하게도 일반적으로 참입니다.
sos404 님이
수학 잘하신다고는 하던데
이 부분에 대해서는
틀리신 것 같네요.
평가원에서는 어떤 식의 표현을 사용하고 있는지 참고해보시는 것이
좋을 것 같습니다.
덧붙이자면
X의 정의역이 [0, 1]이라고 해서 확률밀도함수의 정의역이 [0, 1]이 될 필요가 없다고 하셨는데
그렇다고 해도
[0,1]가 아닌 범위에서 확률밀도함수는 항등적으로 0이 되겠지요.
그러니 확률변수와 확률밀도함수의 정의역이 같아야 하느냐 다를 수 있느냐는
아무 의미없는 말장난에 불과하겠지요.
또한
평가원이 그동안 사용해온 표현을 보시면
확률변수 X의 정의역이 a 부터 b 까지이면 P(a<=X<=b) =1 이다
라는 명제가 성립한다는 사실을 알 수 있으실겁니다.
수학과에서 확률변수의 정의역을 이런 방식으로 이해하지 않는다고 하더라도
그동안 평가원이 이렇게 사용해왔기 때문에
아무런 문제가 없습니다.
sos님 질문있습니다.
로또복권의 각 번호의 당첨확률을 상금에 대응시키는건 이산확률변수인가요?
또 확률밀도함수정의역이 실수전체가 될수있다고 하셧는데, 확률밀도함수를 정의역구간내에서 적분한값은 1이 되야된다는것에 모순이지 않나요?
그거이 아니라면, 그 수많은 정의역중에서 우리가 확률밀도 함수구간을 다루는건 위끝아래끝을 적분하엿을때 1이나오는 구간만일려나
(1) 로또복권의 각 번호마다 상금을 대응시키는 확률변수는 이산확률변수가 맞습니다.
(2) 확률변수는 정의상 실수 전체에서 적분한 값이 1이어야만 됩니다. 아마 실수 전체에서 함수를 적분하면 적분구간이 무한하니까 적분값이 1이 될 수 없지 않냐는 의문을 가지신 것 같습니다. 그러나 실제로 가장 유명한 분포중에 이러한 경우가 있지요. 바로 정규분포입니다. 평균이 0이고 분산이 1인 정규분포를 따르는 확률변수 X의 확률밀도함수는
f(x) = (1/√(2π)) e^(-x²/2)
로 나타납니다. 그리고 위 함수는 실수 전체에서 적분해야 1이 되지요.
그리고 확률밀도함수의 정의역이 실수 전체가 된다고 해도, 만약 확률변수의 치역이 유한하면 확률밀도함수 역시 그 치역의 범위 내에서만 0이 아닌 값을 갖습니다. 이는 확률밀도함수의 정의
f(x) = d/dx P(X ≤ x)
로부터 자명하지요. x가 치역이 속한 구간 밖에 있으면, P(X ≤ x) 는 값이 변하지 않으니까요. 따라서 이 경우에는 굳이 실수 전체에서 따지지 않아도 되지요. 예를 들어서 X가 [0, a] 위에서의 균등분포를 따른다면 (물론, a > 0), 즉
X : [0, 1] → [0, a] : X(x) = ax
라면, X의 확률밀도함수 f(x)는
f(x) = 0 (x < 0)
f(x) = 1/a (0 ≤ x ≤ a)
f(x) = 0 (x > a)
가 됩니다. 따라서 이 경우는 그냥 구간 [0, a]에서만 봐도 문제가 없지요.
..정규분포를 생각못하다니 바보같네요. 아하, 구간내 외에는 사실 0으로만 봐도 무방하군요