[1-6] 수학적귀납법의 이용방법
게시글 주소: https://ui.orbi.kr/00029812143
1STEP 서술의 기본 (필수 커리큘럼)
[1-2] 제시문에 주어진 정리(Theorem)의 이용방법
[1-6] 수학적 귀납법의 이용방법
[1-7] 수학용어의 이용방법
[1-8] 경우를 나눠서 서술하기
#수리논술사용법 #서지현 #수리논술
0 XDK (+1,100)
-
500
-
500
-
100
-
어떤게 좋을까요 3
아주대 숭실대 과기대 인하대 그리고 원하는 과는 기계,건축중 하나인데 기계가 더...
-
19일에 신청햇슴니다 , 뭔 6일에 신청을 받았다는데, 너무 늦게 신청했나요?
-
2컷도 내려올까?
-
왠지 평가원이 이기상을 저격하고 있는 느낌 작년에 평가원이 수학에서 현우진 뉴런을...
-
설거지아들
-
알테어젠 펮트론 0
시발시잘시잘
-
내신 점수대나 생기부에 이상있는 그런거 보이면 cc주는건가요? 아니 몇점대가...
-
저녁 뭐먹지
-
단어 소홀히 해서 개쳐맞았네...
-
궁금하네
-
어디서 보니까 막 자료애 태양 고도? 그런거로 자료제시하고 풀던데 최근에 뭐...
-
서아,민지,혜윤,영주, 누가 더 예쁠까요?
-
이터널리턴할까 1
메테오는 찍어야제
-
고작 한문제 나오는데 근데 또 한문제 차이로 2뜬적이 많아서 잡아놓으면 좋을것같기도하고
-
제발 ㅠㅠㅠㅠ
-
미적 88까지 누적비율 3.xx퍼로 흠... 미적 작년 92점 맞은얘가 올해 85...
-
너무많이해서물리는듯 단순레벨합치면 금장은 그냥 넘길듯... 솔직히 마스터턱걸이찍고재미없어짐
-
풀어보신분들 궁금합니다 국어 실모가 점수 올리는데 도움 많이 됐나요? 전 국어...
-
걍 넷플봐야지 0
새삼고1까지매일12시간씩게임하던내가대단해지네
-
재밌는 겜 없나 18
흠
-
조교하고싶은데 6
지원이나 해볼까
-
사문 45점 백분위가 몇으로 나올까요? 진짜 첫 수능이라 그런가 정말 피말리고 긴장되네요...
-
학이 벌잡아먹으면 이길거같깅한데 벌 짷짤이 못막잖아
-
오마오마갓 6
예상했어 나
-
바램4일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 4일차
-
훈t 인강을 내년부터는 못듣는다고 생각하니 들어보고싶네요 어떤가요???
-
시험시간은 100분인데 왜 14:00~18:00라고 되어있는건지 알려주실분...이게뭐야...
-
널 만날때부터 널 되게 유심히 여겼어. . . 되게 멋있고 처음부터 너랑 연인관계로...
-
논술을 보면 해설지에 올라와있는 풀이 이외의 풀이를 적으면 감점을 당하나요? 예를...
-
이창무 심특 1
제가 김범준이나 현우진을 실던개년둘중 하나를 듣고 이창무 쌤걸 들을려고 하는데 그냥...
-
무물 2
네
-
진학사 0
진학사 표본보고있었는데 국어1 수학3 영어3인데 과탐6,6 이신분계시네요. 진짜 아쉬우실듯..
-
올해 초에 의대 증원으로 입결 내려간다 이러더니 지금 진학사 보면 영향이 있는게...
-
생각을 끊기 힘듬
-
트라우마 on 2
Off
-
물리 vs 지구 18
내년 탐구과목 골라주세요 물리: 쌩노베 옛날에 영재고 잠깐 준비하면서 한번...
-
잘짜여진 콘솔 게임같은건 정서발달 도움되는것같음 책같은거 읽거나 다른 더 좋은...
-
여대 비추인가요? 11
그냥 성별갈등 떠나서 여대다니면 학점 따기 힘들다는 말도 많던데 부모님은 홀로...
-
짭요아정 머금 8
맛이똑같네요 가격도 얘가 더쌈 합격.
-
국어가 88점이 떠서 이 성적이 나오면 (화학 43점임 수정하는 거 깜빡) 서강대...
-
전철 타고 1시간 이내면 당장 출발할 의향 있음 추천좀요
-
걍 살찐건데..
-
논술 궁금한거 물어보십쇼 학교에물어봐야되는 행정적인거 빼고 다 받아드림
-
수험생 아들이 이번 정시에 가군 한양대 융합전자공학부를 고려하고 있습니다. 학부에서...
-
ㄹㅇ로
-
어차피 다음주부터 몇시간씩 굴러야되는데
-
나도나도 무물보 4
답변은 씻고 와서
-
악몽꿨다 0
메가 모의지원 싹 다 위험으로 떨어지는 악몽꿈…ㅋㅋㅋ
-
재미 또한 중요하기에
눈나ㅏ>♡♡♡♡♡
이러시면 안됩니다
왜요 ㅠ
선셍님..
미안하다..
ㅋㅋㅋㅌ 책 사들고 알바하러 총총
통수 사랑해
와! 댕댕이!
사용법 기본편 잘보고있습니다 !!
누나.....칼럼 쓴다고 고생이 많아 ㅜㅜ
누나누나 통수가 개이름이에요???
오늘도 덕코 보내고 읽습니닿
칼럼을 매번 좋게 읽고있다는 의미겠지요? ㅎㅎ 덕분에 힘이 난답니다! 감사합니다
꼭 강의 대박 나서 인강도 만들어주세요! 지방러도 듣고 싶어요ㅠㅠ
대신! 집필에 정말 신경 많이 쓸게요! 수업못듣는 친구들이 책으로도 충분히 독학 가능할 수 있도록 강의자체를 책에 담도록 많이 노력하고 있어요 ㅎㅎ 물론 칼럼도요!
언제나 응원하겠습니다!
칼럼 너무 감사합니다♡♡♡
학교 수리논술 수업 답안 쓸때 항상 많이 떠올리고 있습니다! 좋은 칼럼 감사합니다
'~을 보이시오' 형태이면 수학적귀납법이라고 보면되나요?
어미가 중요한 것은 아니고, 무한한 자연수에 대해 등식 또는 부등식을 증명하라는 문제를 증명하기 위한 툴입니다!
모든 자연수 n에 대하여, f(n)=g(n)이 성립함을 보이는 것은
어떻게 보면, 굳이 수학적귀납법을 이용하라는 말이 없는 이상
첫번째로 생각할 수 있는 증명방법이
논제의 결론이 등식증명이므로
f(n)에서 계산을 출발하여
f(n)= ... = .... =.... = g(n)
이 나오면 증명이 끝입니다.
그런데, 수학적 귀납법을 이용하라라는 말도 없이,
모든 자연수 n에 대하여 f(n)= g(n)이 성립함을 보이라 하였는데,
위의 2020연세대 문제와같이
f(n)을 계산하기 자체가 힘든경우,
보통은 수학적 귀납법을 쓰게 됩니다.
그래서, 오히려 모든 자연수 n에 대하여(또는 특정범위로 나올수도 잇습니다. 2이상의 자연수에 대하여 처럼) 등식 또는 부등식을 증명하는 문제들이 수학적 귀납법을 이용할 수'도' 있다고 생각하면 될 것 같습니다.
모든 자연수 n에 대하여 등식 또는 부등식을 증명하는 문제는
등식증명, 부등식증명, 수학적귀납법 3가지 중에서 적절한 증명방법을 택하여 증명하면 됩니다.
어제 서점에 있길레 납치했어요
통수 사료값 입니닷
이과생인데
수열의 귀납적정의
등비급수 도형활용
함수의극한 도형의 활용같은 문제를
잘 못합니다.
수열의 귀납적정의는
어렵게 나오면
굉장히 높은 확률로 29 30 21에 배치 될텐데 매우 걱정이네요 이번 수가 100점 맞아야만 하거든요 오늘 생일인데
이번 생일이 마지막 생일이 되긴 싫습니다.
수열과 급수쪽에 도형과 관련된 문제들에 약하다는 말씀이시군요
어떤 것이 궁금한지 정확하게 말씀해줄 수 있을까요?
께-임 이름이에요
논술 질문도 많이 해주세요 ㅋㅋㅋㅋ 기다리고 있습니다 유우비트의 질문을 ㅋㅋㅋ
옮밍아웃은 에바에요... 현강에서는 모르는척 할검니다...
사실 설명이 혜자라 질문할게 거의 없어요 ^^ 낼 뵙겠읍니다 쓰앵님
항상 잘 읽고 있어요! 아까 오르비에서 샘 포스터 봤는데 괜히 반갑 ㅋㅋㅋㅋㅋ
건강도 챙기십쇼
수학적 귀납법....수열 기출문제에도 많은....
맞습니다 원래 수학적 귀납법은 수열파트에서 수열의 귀납적정의를 배운뒤 수학적귀납법을 배우는 것인데, 수열에 초점보다는 논리전개에 초점을 맞춰 서술편에 실었어요 ㅎㅎ
보니까 수리논술에도 출제 되나봅니다. 재수할 때 부들부들 하면서 공부했었는데 요샌 문제로 안나오니...
혹시나 싶어서, 수학적귀납법을 쓰는 해설부분을 좀 더 자세하게 수정해놨어요
좀더 이해가 잘될거에요 ♥
감사합니다쌤❤❤
닥추
잘보고있습니다
감사해요!
칼럼 잘봤습니다!!~ 혹시 수리논술 문제 질문 드려도 될까요? ㅠ 안풀리는 게 있어서;; ㅠ
쌤!!! 최선을 하되 건강을 생각하세요. 너무 바쁜 것 같아요.