극값의 정의가 ㅜ
게시글 주소: https://ui.orbi.kr/0002864875
f(x)<=f(a) 이면 x=a에서 극대가 된다고 한다.
책에 나와있는 극값의 정의인데요.
등호가 빠져야 하는 것 아닌가요?
글고, 제가 항상 수학공부할 때, 말 하나하나 따져보는
습관이 있는데요. 빨리빨리 진도나가고 싶은데,,
하나 걸리는게 있으면 그걸 확실히 알아내기 전까지 못넘어가요 ㅜㅜ 미치겠네요.
별 쓸데도 없는 내용가지고 시간만 잡아먹는데 어떻게 하면 좋을까요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3모 올3가보자고..
-
내가 부족한가요 1
딩신을 원한 이유로
-
생윤 만점자 출신인데 윤사 해볼까 사문 그대로 할까 4
27학년도 수능 응시 예정인데 24학년도 수능 때 생윤 9월부터 공부해서 만점 받고...
-
숙대는 0
입결이 본캠보다 에리카랑 비슷한거 맞나유? 사촌 냥대 숙대 썻다는데 에리카를 쓴건가
-
꼭두새벽에 잠 다 깼네 아빠가 제대로 축하 못 해 줘서 미안하다고 용돈 주셔서...
-
스마티 6
-
문득 든 생각 11
인스타나 오르비같은 커뮤나 별 차이없는걸지도 자신이 성취해낸걸 자랑하고 힘들때...
-
오뿌이들 잘자 2
우리 같이 꼭 껴안고 자자
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
얼버기 5
리젠무슨일..
-
사탐 추천좀 1
사탐런할거고 지구+@임 사문 생윤 동사 세지 중에 고민인디 각각 장단점좀,,,
-
Hy 견명조 아님??
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
오늘부터 연고다 스발
-
누구한테 받고싶음?
-
다들 갓생인가봄
-
하루종일 점공만 보던 폐인 인생을 살다가 오늘 하루 해외 여행가서 잊고 있었는데 새벽 4시에 소식 알게됨 3
새벽 4시에 연세대 노문 붙은거 알게더ㅣㅁ 땅바닥에서 친구들이랑 껴안고 염병이란...
-
아. 4
.
-
표점 5점이면 한두문제 차이인가….
-
. 13
ㅡㅡㅡ
-
우울할땐 우웅해 2
우웅
-
ㅈㄱㄴ
-
현우진 드릴드 3
왜 기하없는데 대체
-
ㅈㄱㄴ
-
솔직히 기우에 가깝겠지?
-
야식을 먹어 0
몬참아
-
소은이고 뭐고 0
제 여친이나 보고가세요
-
항상 불안해 1
하루에 공부를 얼마나 많이하고 얼마나 많이 배웠는지와는 상관없이 항상 불안합니다...
-
국어 전공자 혹은 국어황분들 하위 개념 상위 개념 도와주세요! 5
물리는 수학의 하위 개념인가요? 아님 물리가 수학의 상위 개념인가요? 또 지구,...
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
20대후반 3
sky공대 입학 어때
-
에휴..
-
연대 첨단컴퓨팅 0
이번에 신설된건가요?? 작년 추합보려고 하는데 없길래 예비 몇번까지 돌까요
-
everything's gonna be alright 8
웃고 싶을 때는 웃어줘
-
신명중명조는 도대체 어디서 가져오신 겁니까.. 아무리 찾아도 전 안보입니다... ..
-
일찍 자러갈게요 9
제가 다시 돌아오면 사람이 아니고 개입니다
-
ㅅㄱㅈㅁ
-
처음 보는 지문이여도 화자의 의도가 어떤 지와 어떠한 이야기를 하고자 파악이...
-
오르비는 오늘 그만하고 12
액상좀만피고잠 ㅂㅂ
-
현역 때 국숭세단이 적정이었는데 재수 땐 연대!! 총 4급간 올렸네요 헤헤헤 기분좋아요
-
발표를 기원하며 6
줄여서..
-
공군입대 시기도 그렇고 판을 깔아주니 도전 안 해볼수가 없네 없는 동력이라도 끌어써야하나
-
약해 ㅋ 1
오르비 내꺼
-
성대 나군을 보면 22,23년보다 작년입시에서 충원율이 확 떨어지던데 그런 이유가...
-
국어 과외 0
국어 과외하고 싶은데 과외를 받아본 적이 없어서 과외가 어떤 식으로 이뤄지는지...
-
이번에 컷 몇일거같나요
-
뭐임 1
좋아요 개많이 받았네 이게 맞나? ㅋㅋㅋ
미분했을때 a중심으로 기울기가 +에서-로바뀌거나 그반대면 극값같는거 맞는것같은데요;;
그책이름이뭐에요? 아니뭐 그냥 궁금해서요 ㅎ
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
음.. 결론만 보면 극값이 맞아요.
제가 고등학교 교과서에서 본 극값의 정의는 '증감이 변하는 점' 이구요
대학교1년 Calculus 책에서 본 정의는 Local Maximum(Minimum) 이라구 임의의 구간을 잡았을 때
구간내에서 최대(소)가 되는 점을 극값으로 정의해요. 여기서 구간을 +-무한대로 잡으면 극대값=최대값이 되겠죠??
보신책에서는 구간을 제대로 안잡아놓고 그냥 써놓은거같은데 극값⊃최대(소)값 이니까 틀린표현은 아닙니다