6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://ui.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 241110도 그냥 2분컷냈어서 그냥 이렇게이렇게 풀면 당연한건데 싶지만...
-
여붕이구한다 ㅇㅇ
-
망했다 1
2년 된 버즈 잃어버림
-
원장연 원장연하는거 ㅈㄴ 긁히네
-
내가 쓴 과만 폭인 것 같네....... 다른 데 넣었음 최초합인데 허허 추합이라도...
-
과탐이 재밌음... 표본이 고여도 잘하면 그만
-
집 근처에 (목동,강남권x) 꽤나 지점 많은 브랜드의 관리형 스카 새로운 지점...
-
고3때 갑자기 사탐 선택한 애들 이과 350명인 학교에서 다들 하남자라고 비웃었지만...
-
중시경건 3
마음이 따뜻해지고 경건해지는 참 좋은 말이다
-
근데 점공이 2
한꺼번에 몇명 들어왔다가 또 하루종일 정체네요.. 이제 진짜 쓸 사람들 다 쓴건가
-
재밌군
-
해볼까 Yoon's 가르칠순 있는데 가르쳐도 되나?
-
1과목 실수들(원장연이라는 나쁜말은 ㄴㄴㄴ) 다 투로 가거나 사탐런치는게 지금...
-
1. ∃원인∀결과(원인→결과) : "모든 결과를 일으키는 어떤 원인이 존재한다."...
-
잇올 6시 오픈하자마자 1등으로 입실하던 시기와 무단지각으로 벌점 60점 쌓은...
-
ㅈㄱㄴ
-
나도 과외 구하고 십다 12
시급 만원에 할 수 잇구요 신촌 쪽에서 30분거리에 허수친구면 좋구요 제가 오르비...
-
문명6 0
오랜만에 해볼까
-
"사회복지학과 지망생" 사복과 출신 반수생: STAY...
-
뜌따이 되는거같노 .....
-
네
-
3년동안 한시에 자고 6시반에 일어났는데 대학와서는 한시에 자면 9시 돼야 일어나는듯
-
햄버거는 아직 무리인가봐요
-
CC는 뚫으면 되는거잖아?
-
여붕이내놔 7
여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔...
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
-
내신영어 의문점 3
내가 내신 버린 이유가 영어 이년때문임 고1때 지문 풀암기로 존나 빡공할때도...
-
세특은 정상임 그래서 bb일 듯 반박시 니말이 틀림 제발
-
과탐2에서 과탐1오는걸 원런이라고 부름? 아니잖아 그냥 사탐이 당연한거고 과거...
-
필수본 교재없이 0
인강만 들으면 안되나? 완자 이미 있는데 사야하나?
-
자유대한~~~ 0
그냥 갑자기 써봄...
-
U치환 0
행복 유치환 사랑하는 것은 사랑을 받느니보다 행복하나니라 오늘도 나는 에메랄드 빛...
-
기하 과외 구합니다 17
각각 22 23 25수능 22번틀 100점 22번틀입니다 시급2 대학 성균관대...
-
여캐일러 투척 18
이거나 올려야지
-
물1 왜 버림? 4
안 씻기만 해도 되는 과목인데
-
커하 4
교육청 76 99 2 99 98ㅠ 역시 오르비라 그런가 다들 너무 고능함...
-
ㅋㅋ 1
ㅋ
-
사탐런 X 자기객관화 상황판단력 GOAT 사탐개척임
-
사탐런 생윤사문하는데 생윤 개념강의 들을 땐 다 잘 이해하고 잘 외웠는데 기출가니깐...
-
예비고3이고 겨울방학 때 지구 공부를 다 끝내야하나요 작년지구 내신다1맞긴했는데...
-
와 진짜 맛있다 5
이 가격에 이 정도 맛은 얘 말고는 찾기 힘든 듯
-
고려대 교과우수 2
교과 성적 잘못 입력하고 진학사 들어오는 사람 많을까요??
-
분노는 나의 힘 2
으으으으으으으
-
무등비 삼도극 빠지니까 오히려 더 어려워진거 같은
-
사탐에서 경제느낌인가 둘다 냄새는 뭔가 비슷할거같애
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ