오늘 인문계 고대 모의논술
게시글 주소: https://ui.orbi.kr/0001144478
수리논술 a 답 2030이라는데
찍어서 맞앗는데
풀이좀 알려줄 사람 업나?ㅜㅜ
수리논술 b풀이도 ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이렇게 인기가 많은 적이 있었던가... 새 역사를 써내려가는 신흥 아재 히-르나
게시글 주소: https://ui.orbi.kr/0001144478
수리논술 a 답 2030이라는데
찍어서 맞앗는데
풀이좀 알려줄 사람 업나?ㅜㅜ
수리논술 b풀이도 ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
이렇게 인기가 많은 적이 있었던가... 새 역사를 써내려가는 신흥 아재 히-르나
저는 자연계봤어요 오늘..ㅋㅋ
인문계는 많이어려웠나요?
자연계는 막 어렵다는느낌은 안들었는데..
글쎄요 ㅋㅋ막연히 수학에 두려움이 있는 문과생에게 수리논술은 꽤 큰 장벽이죠@_@ 수학 잘 하시면 워밍업으로 인문계열꺼 풀어주심 안될까요?ㅜㅜ 고대 사이트에 문제 올라와잇던데...
숫자가 ... 천단위네요.....
본 사람 많네요ㅋㅋㅋ 우리반은 담임이 ㅂ;ㅅ이여서 이거 '모의' 라는 말을 안해줌
그래서 우리반애들 전부 다 뭐 새로생긴 수시인가 했음 그리고 그때 바로 마감ㅋㅋㅋㅋㅋ
담임 진짜 ㅂ;ㅅ;;
엥? 학교에서 뽑아서가는거 아닌가요??
아까 보니까 교내추천 전형 외에 인터넷 접수 전형도 잇더라구용 ㅎㅎ 근데 저희는 따로 말도 안해줌 몇 명만 각각 담임이 직접 전화돌렸는뎅
네 학교에서 뽑을 때 담임이 말해주잖아요
그때 제대로 말 안해줘서 학교에서 마감했어요ㅋㅋ
홈페이지 어디에 있어요? 못찾겠어요;;
아 찾았어요 입학처에 있었네요
아 찾았어요 입학처에 있었네요
b번은 x-x^2<1/4 형태로 만들어서 증명하시면 되겠습니다. 함수를 이용해서요. x가 1/2이 안되도록 증명하시면 됩니다.x가 1/2일때의 값.즉, 최댓값이 1/4이기 때문입니다. 그리고 x는 양수이어야합니다. x가 노령화지수 이기때문에 정의역이 사람입니다. 그래서 무조건 양수가 된다는 것도 쓰셨어야 할겁니다.
x-x^2의 형태는 노령화지수=노년부양비^2을 통해서 만들수 있습니다. 이식을 통해 식을 대입한뒤 x로 치환하시면 됩니다.
저도 오늘 시험봤어요 ㅋ
우와 ㅋㅋㅋㅋ저완전 산으로 갔네요 ㅋㅋㅋ 근데 a형에사 최댓값은 n=2030.5라서 2030년이라고 해도 되나요?? ㅠㅠ 답만 맞았지 진짜 발로 쓰고 나온듯 ㅋㅋ
a번은 n과 n+1을 각각 대입하면 f(n), f(n+1)라고 합시다.
f(n) / f(n+1) <1 이면 f(n) < f(n+1) 이죠? 이걸 이용해서 푸시는겁니다. n이 자연수이기때문에 그 다음수인 n+1과 나눴을때 1보다 작으면 증가상태에 있는 것이고 크면 감소상태에 있는 것이지요. 최댓점은 증가상태에서 감소상태로 변할때에 생깁니다. 그래서 식이 <1, >1 두개가 생기고
각각 2030n이 나옵니다. 그래서 n은 2030이 됩니다.
역시 오르비는 이런 글이 있으면 성지가 되는건가;; 수학의 神들이 많네여 ㅎㅎ
아니요;;;ㅎㅎ
전 수학의 신이 아닙니다;;; 수학 못해요 ㅠㅠ;;
전 지방살아서 교내추천받구 금욜날 받고 오늘 풀었다능..
이게 어제 실시한 거군요 ㅎ
수리논술....만 보면 정신이